
ARES: Adaptive, Reconfigurable,
Erasure coded atomic Storage

Kishori M Konwar

Joint work with
Nicolas Nicolaou, Viveck Cadambe, Prakash Nayarana Moorthy, Nancy

Lynch and Muriel Medard

Jul 7, 2019
ICDCS 2019

Outline of the Talk

• Distributed Storage – Problem Statement

• System Model
– Atomicity, Erasure Codes, and Configurations

• DAP: Data Access Primitives

• Reconfiguration Service
– Configuration Sequence

• Erasure Coded DAP implementation

27/7/2019 ICDCS 2019

Implementing a fault-tolerant, dynamic shared storage object in an asynchronous,
message-passing environment:
• Availability + Survivability => use redundancy
• Asynchrony + Redundancy => concurrent operations
• Behavior of concurrent operations => consistency semantics

- Safety, Regularity, Atomicity [Lamport86]

• Service Liveness Despite Failures => host reconfiguration

Problem Statement

3

Shared read/write storage object

7/7/2019 ICDCS 2019 3

Redundancy: Erasure Codes
([n, k] MDS Codes)

servers

vkv1 v2 v3

value

codeword

recovered value
any k coded elements can be used to decode

cnc1 c2

Encode

vkv1 v2 v3

can tolerate
any (n – k) missing

elements

decode

4/28

coded elements

7/7/2019 ICDCS 2019

fragments

ck

v

Erasure Code vs Replication

7/7/2019 ICDCS 2019 5

A well-designed algorithm has great potential to reduce storage and
communication costs while using erasure codes

Consistency: Atomicity

7/7/2019 ICDCS 2019 6

• Provides the illusion that operations happen in a sequential order
- a read returns the value of the preceding write
- a read returns a value at least as recent as that returned by any

preceding read

Writes

Read 1

Read 2

Read 3

*

*

*

*

time*

System Model: Definitions

77/7/2019 ICDCS 2019

•Clients: W writers & R readers (MWMR)
•Reconfigurers: G recon clients
•Servers: S replica hosts

Components

•write(v): updates the object value to v
•read(): retrieves the object value
•reconfig(c): installs a new configuration

Operations

•Asynchronous
•Message-Passing
•Reliable Channels (messages are not lost or altered)

Communication

•Crashes
•Any reader, writer, or recon client
•Server failure specified per configuration

Failures

Configurations

7/7/2019 ICDCS 2019 8

S1

S2

S3

• A configuration c is
characterized by:
– A set of servers
– A quorum set system

on servers
– A consensus instance
– A DAP implementation

Q1
Q2

Q3

Propose(c) Decide(c)

Consensus

Get-data/tag() Put-data(<t,v>)

DAPs

Re-Configuration Operation

7/7/2019 ICDCS 2019 9

S1

S2

S3

Q1
Q2

Q3

• Change the configuration parameters (install new config)
– Due to failures
– Due to admin maintenance

S1

S2

S5

Q1

Q2

S4

X

Reconfig()

c1
c2

Complexity Measure

7/7/2019 ICDCS 2019 10

Storage +
Communication

Cost

Communication
delays (#messages

and rounds)

Message bit
complexity

Storage Efficiency
at the hosts

DAPs: Data Access Primitives

7/7/2019 ICDCS 2019 11

• Operation Ordering: logical tags t = <z,wid>
– Compared Alphanumerically

• DAP: Building blocks to query/alter tags and data
• For a configuration c, any client process p may invoke any

of the following data access primitives:

• DAPs may be used to yield Atomic Register Implementations if
they satisfy the following properties:
– C1: If a put-data(<t,v>) completes before get-tag/get-data() operation

in the same configuration c => get-*() op returns a tag ≥ t

– C2: if get-data() that returns <t,v> then put-data(<t,v>) completed
before or is concurrent to get-data(), else <t,v> = <t0, v0>

DAP Consistency Properties

7/7/2019 ICDCS 2019 12

put-data(<t,v>)

get-tag/get-data(t’ ≥t)

time

put-data(<t,v>)

get-data(<t,v>)

time

ARES

Reconfiguration
Service

Read/Write
protocol

DAPs for each
configuration

ARES Protocol

7/7/2019 ICDCS 2019 13

DAPs are used by all read/write and reconfig operations

• Global configuration sequence GL

• Flags {P, F}: pending, finalized
– Pending: not yet a quorum of servers received msgs
– Finalized: new configuration propagated to a quorum of servers

• nextC: each server points to the next configuration
– Same nextC to all servers of a single config c (due to consensus)

Configuration Sequence

7/7/2019 ICDCS 2019 14

⏊c0

CN0 Q0

nextC =(c1, F)

c1

CN1 Q1

nextC =(c2, P)

c2

CN2 Q2

nextC =(,)⏊ ⏊

• A recon operation performs 2 major steps:
1) Configuration Sequence Traversal
2) Configuration Installation

• Transfers the object state from the old to the new
configuration

Reconfiguration Service

7/7/2019 ICDCS 2019 15

attempt get to the latest configuration
introduce the new configuration
move the latest value to the new config
let servers know it is good to be finalized

(1)

(2)

reci

⏊

recon(c3)

: read-next-config()

: put-config()

: configuration link

c0*

CN0 Q0

c1

CN1 Q1

c2

CN2 Q2

: consensus propose()

Configuration Sequence Traversal

reci

⏊

recon(c3)

: read-next-config()

: put-config()

: configuration link

c0*

CN0 Q0

c1

CN1 Q1

c2

CN2 Q2

: consensus propose()

Configuration Sequence Traversal

1
2
put-config(c1)

read-next-config()

reci

⏊

recon(c3)

: read-next-config()

: put-config()

: configuration link

c0*

CN0 Q0

c1

CN1 Q1

c2

CN2 Q2

: consensus propose()

Configuration Sequence Traversal

3
4

put-config(c2)

read-next-config()

reci

⏊

recon(c3)

: read-next-config()

: put-config()

: configuration link

c0*

CN0 Q0

c1

CN1 Q1

c2

CN2 Q2

: consensus propose()

Configuration Sequence Traversal

5

6 7

put-config(c3)

read-next-config() CN2.propose(c3)

c3

CN3 Q3

For any two reconfig ops π1, π2 s.t. π1 before π2
• Configuration Consistency
• π2 witnesses the same configuration in the ith position

of the sequence as π1

• Sequence Prefix
• the sequence witnessed by π1 is a prefix of the

sequence witnessed by π2

• Sequence Progress
• If the last finalized configuration witnessed by π1 has

an index i and the last finalized config witnessed by π2
has an index j, then i ≤ j

Reconfiguration Service Guarantees

7/7/2019 ICDCS 2019 20

For any two reconfig ops π1, π2 s.t. π1 before π2
• Configuration Consistency

• Sequence Prefix

• Sequence Progress

Reconfiguration Service Guarantees

7/7/2019 ICDCS 2019 21

π1 c0 c1 c2 …

π2 c0 c1 c2 …

π1 c0 c1

π2 c0 c1 c2

π2 <c0, F> <c1, P> <c2, , F> …

π1 <c0, F> <c1, P> <c2, P>

Read/Write Operations using DAPs

7/7/2019 ICDCS 2019 22

Reader Protocol
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
(t,v)=max(cseq[i].get-data())

• Do
• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

Writer Protocol(val) (at wi)
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
tmax=max(cseq[i].get-tag())

• (t,v)= (<tmax+1,wi>, val)
• Do

• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

• Servers maintain a List of the last δ coded
elements they received

• Processes requests:
– Get-tag(): Max tag from the list of servers
– Get-data(): get list of servers to try to decode

some value
– Put-data(): send tag t and coded element ej to

server sj

DAP Implementation using EC

7/7/2019 ICDCS 2019 23

Get-tag()

7/7/2019 ICDCS 2019 24

QUERY-TAG
c.get-tag() at pi
• Request tag from n+k/2

servers in c.Servers
• Discover tmax=max(t) from the

received replies
• Return tmax

Receive(Query-Tag) at server sj
• Find tmax within Listj
• Send tmax to the requester

Get-data()

7/7/2019 ICDCS 2019 25

QUERY-LIST
c.get-data() at pi
• Request List from n+k/2

servers in c.Servers
• Discover tmax from the

received Lists s.t. its value
v is decodable

• Return (tmax,v)

List i

Receive(Query-List) at server sj
• Reply with Listj

Put-data(<t,v>)

7/7/2019 ICDCS 2019 26

PUT-DATA(t,e1)

c.put-data(<t,v>) at pi
• Generate code elements

[(t,e1), …, (t,en)] where
ei=Φi(v)

• Send (t,ei) to si ∈ c.Servers
• Wait until receiving ACK from

n+k/2 servers in c.Servers

Receive(Put-Data, <t,ej>) at server sj
• Add <t,ej> in Listj
• If |Listj| > δ+1

• Find tmin in Listj and remove any
<tmin, *> pairs from Listj

• Add element <tmin, > in Listj
• Reply with ACK

s1

ACK

⏊

• MDS code Based Algorithm
• Uses [n, k] MDS codes, n vs n/k
• Any client may crash fail and at most

servers can experience crash failure
• Always safe
• If the number of write operations concurrent

with a read operation is upper bounded by
then the read and write operations are live

• First two-round erasure-code-based atomic
memory algorithm

Properties of DAP implementation

7/7/2019 ICDCS 2019 27

• Different DAPs per Configuration

• Regardless their implementation the DAPs
– Serve the same purpose in any configuration

• Get-tag: returns the max tag in the configuration
• Get-data: returns data associated with a tag
• Put-data: alters the data associated with a tag

– Can yield atomic implementations if they satisfy
properties C1 and C2

Modular & Adaptive Implementation

7/7/2019 ICDCS 2019 28

• We presented ARES
– Reconfigurable
– Atomic Read/Write Operations
– Use of DAPs for

• Modularity: Reads/writes omniscient of the underly
DAP implementation

• Adaptiveness: usage of any algorithm per configuration

– First implementation of Erasure Coded read/write
operations in a reconfigurable setting

Conclusions

7/7/2019 ICDCS 2019 29

Thank You!

307/7/2019 ICDCS 2019

What is Common Among These Applications?

All these Applications Use Storage as Service at its Core

Storage Systems providing “suitable guarantees” are essential for application design

317/7/2019 ICDCS 2019

Consistency Guarantees of a Storage
Service

Storage
Service

Write

Read
Clients

Consistency
Guarantee

Quick Definition Application View
Point

Storage Service
Design

Strong
Consistency

Read returns last
completed Write

Preferred Costly, Complex
Algorithms

Weak
Consistency

(e.g. Eventual
Consistency)

Read eventually
returns a

completed write

Not Preferred,
behavior

different from a
single threaded

program

Relatively less
costly, easier
algorithms

327/7/2019 ICDCS 2019

Consistency in Various Storage Systems

System Consistency Notion

Facebook TAO Eventual Consistency

Amazon Dynamo Eventual Consistency

OpenStack Swift Eventual Consistency

Cassandra Eventual Consistency/Strong Consistency

Microsoft Azure Store Strong Consistency

337/7/2019 ICDCS 2019

Atomicity

Writes

Read 1

Read 2

Read 3

* *

*

*

*
The new point is not

consistent with actual events

• Shrink the duration of each operation to a chosen
serialization point between the operation’s invocation and
response, such that

• the external behavior of reads/writes is consistent with the
the ordering of the serialization points.

347/7/2019 ICDCS 2019

Reconfigurable Distributed Storage
System

357/7/2019 ICDCS 2019

Reconfigurable Distributed Storage
System (cont’d)

36

X

7/7/2019 ICDCS 2019

Reconfigurable Distributed Storage
System (cont’d)

37

X

X

7/7/2019 ICDCS 2019

Reconfigurable Distributed Storage
System (cont’d)

38

X

X

Recon clients
(system admins)

7/7/2019 ICDCS 2019

Reconfigurable Distributed Storage
System (cont’d)

397/7/2019 ICDCS 2019

Problems due to lack of consistency
(scenario 1)

• Alice: I lost my wedding ring.

• Alice: Thank god! I found it!

• Bob: I am glad to hear that!

40

• Alice: I lost my wedding ring.

• Bob: I am glad to hear that!

…….
• Alice: Thank god! I found it!

• Alice: I lost my wedding ring.

• Alice: Thank god! I found it!

• Bob: I am glad to hear that!

Bob

Alice

Rachel

7/7/2019 ICDCS 2019

Atomicity and Shared Memory

41

Independent clients
Cloud storage

Implementation of one
atomic object

X

X

7/7/2019 ICDCS 2019

Should we bother about Storage Cost? (A big Yes !)

Source: EEtimes Article, https://www.eetimes.com/author.asp?section_id=36&doc_id=1330462

Object Storage is one of the main techniques to handle Unstructured Data

427/7/2019 ICDCS 2019

Who uses Erasure codes for Storage
?

System Code

Google File System MDS Code

(Facebook) HDFS-RAID (Back-Up) MDS Code

Microsoft Azure/Giza (Strongly Consistent,
Consensus based)

Local Reconstruction Codes + MDS Codes

• Erasure Codes have been traditionally used for efficient storage of Write-Once Data
• Recent Works Show benefits of Erasure Codes for Consistent Data Storage as well

437/7/2019 ICDCS 2019

Efficient Erasure codes for Data Storage is
an Active Area of Research

We can build algorithms on top of any of these coded storage systems
and still guarantee consistency properties

All the above codes have significantly lower storage overhead than replication
for the same fault tolerance

44

Code Main Use Where is it Used?
Local Reconstruction Codes Fast Degraded Reads Microsoft Azure

Regenerating Codes Low Bandwidth Repair of
Crashed Servers

Networked Storage Systems

Random Linear Network
Codes (RLNC)

Ideal for Decentralized
Operation

Peer-to-Peer Systems, Edge
Caching (Ask Vitaly!), etc

Codes for Clustered Systems
(hybrid codes)

Flexible trade-off of intra vs
inter cluster bandwidth

costs

Geo distributed Data
Centers

7/7/2019 ICDCS 2019

Specific Challenge while Using Erasure
Codes for Consistent Storage :

Concurrent Writes

Writer(v)

Reader

• Write Concurrent with Read
• Reader potentially gets coded values

corresponding to different tags

The main Algorithmic Challenge is Ensuring Liveness of Read Operations (Decodability)
in the presence of Concurrent Writes

457/7/2019 ICDCS 2019

Erasure Code –Based Leaderless
Algorithms for Strong Consistency

(Our works)

1. The SODA Algorithm (IEEE IPDPS 2016)
• Optimizes Storage Cost at the Expense of Write Cost

2. The RADON Repair (OPODIS 2016)
• Permits Online Repair of Crashed Servers

3. The Layered Data Storage (LDS) Algorithm (ACM PODC 2017)
• Modularizes Implementations of Consistency and Erasure Codes

467/7/2019 ICDCS 2019

• MDS code Based Algorithm
• Uses [n, k] MDS codes, n vs n/k
• Any client may crash fail and at most servers can

experience crash failure
• Always safe
• If the number of write operations concurrent with a read

operation is upper bounded by then the read and write
operations are live

• First two-round erasure-code-based atomic memory algorithm

47/28

Properties of TREAS

7/7/2019 ICDCS 2019

Storage and Communication Costs

Algorithm Storage Cost Read
Communication

Cost

Write
Communication Cost

ABD n 2n n

TREAS

e.g., number of servers n = 20 and [n k] MDS code with k = 10
487/7/2019 ICDCS 2019

Atomicity in terms of DAP

49

Suppose the DAP implementation satisfies the consistency
properties C1 and C2. Then any execution the above protocol
in a configuration configuration, is atomic and liveness of the
algorithms is possible if DAPs are live

7/7/2019 ICDCS 2019

At a process pi:

At a server sj:

Get-tag()

7/7/2019 ICDCS 2019 50

QUERY-TAG

Read Operation : get data

L1 = { (t20, c9,1), , (t17, c17,1), (t15, c15,1), (t14,),…….……….…..}

L2 = { (t16, c16,4), (t15, c15,4), (t14, c14,2)…………..…….…}

L4 = { (t20,), (t19, c19,4), (t18,), (t16, c16,4), (t15, c15,4), ………………………..……...}

L3 = { (t18, c18,3), (t16, c16,3), , (t14, c14,3)…………….….…}

L5 = { (t18, c18,5), , (t15, c15,5), …… ………...(t13, c13,5)..}

L6 = { (t18, c18,6), (t16, c16,6), , (t14, c14,6)………………..…}

L7 = { , (t19,), (t18, c18,7), (t16, c16,7), (t15, c15,7), …………… .….... ……. }

(t18, v18)
decode

7/7/2019 ICDCS 2019 51

TREAS: implementation

52

read

write

7/7/2019 ICDCS 2019

53

TREAS: implementation (cont’d)

7/7/2019 ICDCS 2019

54

TREAS: implementation (cont’d)
At a server

7/7/2019 ICDCS 2019

Storage and Communication Costs

Algorithm Storage Cost Read
Communication

Cost

Write
Communication Cost

ABD n 2n n

TREAS

e.g., number of servers n = 20 and [n k] MDS code with k = 10
557/7/2019 ICDCS 2019

• A set of servers, each with an unique id
• The server side responses of the algorithm
• An instance of the consensus service running on top of

the set of servers in the configuration

Configuration

56

X
X

•FLP not live
•Cryptocurrency byzantine setting

consensus protocol

participants propose agree

7/7/2019 ICDCS 2019

Moving data during reconfiguration

57

X

X

Recon client7/7/2019 ICDCS 2019

RECS: reconfiguration operation

587/7/2019 ICDCS 2019

RECS: reconfiguration operation

597/7/2019 ICDCS 2019

• RECS: Always atomic
• In the absence of reconfigurations: liveness of the read/write

operations is dependent on the liveness of the DAP primitives

• In case of reconfigurations:
– messages arrive within the time interval [d, D]
– k is the number of reconfigurations in the entire execution or within a

sufficiently long interval
– k is fixed then d can be arbitrarily small – liveness
– Reconfigurations are infinitely often, without any bound on d ---

cannot guarantee liveness
– Reconfigurations are infinitely many, there exists a minimum bound on

d --- can guarantee liveness

Performance of RECS

607/7/2019 ICDCS 2019

