
Noname manuscript No.
(will be inserted by the editor)

Tractable low-delay atomic
memory?

Antonio Fernández Anta ·
Theophanis Hadjistasi ·
Nicolas Nicolaou ·
Alexandru Popa ·
Alexander A. Schwarzmann

Received: date / Accepted: date

Abstract Communication cost is the most commonly

used metric in assessing the efficiency of operations

in distributed algorithms for message-passing environ-

ments. In doing so, the standing assumption is that the

cost of local computation is negligible compared to the

cost of communication. However, in many cases, oper-

ation implementations rely on complex computations

that should not be ignored. Therefore, a more accurate

assessment of operation efficiency should account for

both computation and communication costs.

This paper focuses on the efficiency of read and

write operations in emulations of atomic read/write shared

memory in the asynchronous, message-passing, crash-

prone environment. The much celebrated work by Dutta

? This work combines results from [5] and [6], that appeared
in OPODIS’15 and OPODIS’16 respectively.

A. Fernández Anta
IMDEA Networks Institute, Madrid, Spain
Email: antonio.fernandez@imdea.org

T. Hadjistasi
Algolysis Ltd., Limassol, Cyprus
Email: theo@algolysis.com

N. Nicolaou
Algolysis Ltd., Limassol, Cyprus
Email: nicolas@algolysis.com

A. Popa
Department of Computer Science, University of Bucharest,
and
the National Institute for Research and Development in In-
formatics, Bucharest, Romania
Email: alexandru.popa@fmi.unibuc.ro

A. A. Schwarzmann
School of Computer and Cyber Sciences, Augusta University,
Augusta, GA, USA.
Email: aschwarzmann@augusta.edu

et al. presented an implementation in this setting where

all read and write operations could complete in just a

single communication round-trip. Such operations where

characterized for the first time as fast. At its heart, the

work by Dutta et al. used a predicate to achieve that

performance. We show that the predicate is computa-

tionally intractable by defining an equivalent problem

and reducing it to Maximum Biclique, a known NP-hard

problem.

We derive a new, computationally tractable predi-

cate, and an algorithm to compute it in linear time. The

proposed predicate is used to develop three algorithms:

ccFast, ccHybrid, and OhFast. ccFast is similar to

the algorithm of Dutta et al. with the main difference

being the use of the new predicate for reduced compu-

tational complexity. All operations in ccFast are fast,

and particular constraints apply in the number of par-

ticipants. ccHybrid and OhFast, allow some opera-

tions to be “slow”, enabling unbounded participants in

the service. ccHybrid is a “multi-speed” version of cc-

Fast, where the reader determines when it is not safe

to complete a read operation in a single communica-

tion round-trip. OhFast, expedites algorithm OhSam

of Hadjistasi et al. by placing the developed predicate

at the servers instead of clients and avoiding excessive

server communication when possible. An experimental

evaluation using NS3 compares algorithms ccHybrid

and OhFast to the classic algorithm ABD of Attiya

et al., the algorithm Sf of Georgiou et al. (the first

“semifast” algorithm, allowing both fast and slow op-

erations), and algorithm OhSam.

In summary, this work gives the new meaning to the

term fast by assessing both the communication and the

computation efficiency of each operation.

1 Introduction

Emulating atomic [15] (linearizable [14]) read/write ob-

jects in message-passing systems is one of the funda-

mental problems in distributed computing. The prob-

lem becomes more challenging when participants in the

service may fail and the environment is asynchronous,

i.e., when there are no time bounds on the delivery of

messages and the computation speeds. To cope with

failures, distributed object implementations like [2,17],

use redundancy by replicating the object at multiple

(geographically dispersed) network locations (replica

servers). Replication however raises the challenge of

consistency, as multiple object replicas can be accessed

concurrently by multiple processes and may be incon-

sistent. To characterize the properties of distributed ob-

ject implementations, several consistency notions were

defined, the strongest of which being atomicity. It is the

2 Antonio Fernández Anta et al.

most intuitive consistency semantic, providing an illu-

sion of a single-copy object that serializes all accesses:

each read operation returns the value of the latest pre-

ceding write operation, and this value is at least as re-

cent as that returned by any preceding read.

The seminal work of Attiya, Bar-Noy, and Dolev

[2] presented an algorithm, commonly known as al-

gorithm ABD, implementing single-writer, multiple-

reader (SWMR) atomic objects in message-passing

crash-prone asynchronous environments. Each replica

of the object is associated with a timestamp, and the

order write operations is determined by the values of

the timestamps. Each operation is guaranteed to termi-

nate as long as some majority of replica servers do not

crash. The write protocol involves a single round-trip

communication, while the read protocol involves two

round-trip stages. Specifically, the writer increments

the timestamp for each write and propagates the new

value and its timestamp to some majority of replicas.

The readers are implemented as a two-phase protocol

(each phase incurring one round-trip communication),

where the first phase obtains from some majority of

the replicas their values and timestamps, and uses the

value corresponding to the highest timestamp as the

return value. The reader then performs a second phase,

in which it propagates this highest timestamp and the

associated value to some majority of replica servers, en-

suring that any subsequent read will discover the value

that is at least as recent. Of note is that the local pro-

cessing in each operation is very modest: each phase

simply needs to ensure that messages from a major-

ity of replicas are received. The algorithm guarantees

atomicity in all executions, relying on the fact that any

two majorities have a non-empty intersection. Avoid-

ance of the second “write” phase could lead to viola-

tions of atomicity. Following this development, a folk-

lore belief persisted that in asynchronous multi-reader

atomic memory implementations “reads must write.”

The work by Dutta et al. [3] dispelled this belief,

by presenting an atomic register implementation where

both reads and writes involve only a single communi-

cation round-trip (or simly round). An implementation

where all read and write operations complete in a single

round is called fast. It was shown that fast implemen-

tations are possible under a constraint on the number

of readers. Specifically, if R is the number of readers, S

is the number of replicas, and f is the maximum num-

ber of crashes in the system, then it must be the case

that R < S
f − 2. The authors also showed that it is im-

possible to devise fast multiple-writer, multiple-reader

(MWMR) implementations, in which all read and write

operations complete in a single round.

To circumvent the bounds on the number of readers,

researchers started exploring multi-speed implementa-

tions. We say that an implementation is multi-speed

if read operations may involve a different number of

communication round-trips. For example, works [10,11]

proposed SWMR implementations with two-speed op-

erations and unbounded number of readers. The Sf al-

gorithm in [11] employs a particular predicate in the

readers (similar to the one introduced in [3]) to deter-

mine whether it is safe for a read operation to terminate

after one round, and allowing arbitrary number of read-

ers. The algorithm in [10] introduced quorum views that

are the client-side tools that examine the distribution

of the latest value among the replicas in order to enable

fast read operations. Both [10] and [11] trade commu-

nication for the scalability in the number of readers.

Under conditions of low concurrency, both algorithms

allow most reads to complete in a single communication

round-trip; otherwise the reads take two round-trips

(similar to ABD). To determine the speed of an oper-

ation, both algorithms incur significant computational

overheads: in [11] to evaluate the mentioned predicate,

and in [10] to examine the distribution of object values

in all the possible replica subsets.

Thus, a trade-off emerged in algorithms that imple-

ment fast operations: in order to reduce the number of

communication rounds the amount of local processing

is substantially increased. Georgiou et al. [9] questioned

the computational complexities of the “fast” implemen-

tations, and presented a study of the effects on the per-

formance of the algorithms. The authors analyzed the

computational complexity of the algorithm in [4], the

only algorithm that enabled some fast writes and reads

in the MWMR model, and showed both analytically

and experimentally how the communication cost was re-

duced at the expense of the computational overhead of

the algorithm. In particular, the authors expressed the

predicate used in the algorithm by a computationally

equivalent problem and they showed that this problem

is NP-hard. To improve the efficiency of the algorithm

from [4], they proposed a polynomial approximation al-

gorithm.

Recently, Hadjistasi, Nicolaou and Schwarz-

mann [13] showed that atomic operations do not

necessarily require complete communication round

trips. They presented a SWMR algorithm, called

OhSam, where each operation involves three one-way

communication exchanges, in essence taking one and

a half round-trips to complete. Furthermore, their

algorithm performs a very modest amount of local

computation, resulting in negligible computation

overhead.

Tractable low-delay atomic memory? 3

Contributions. This paper focuses on the practical-

ity and efficiency of read and write operations in dis-

tributed SWMR atomic register implementations. We

show that the computational costs of the fast algorithm

in [3] are substantial, and we propose a determinis-

tic solution that improves the computational burden

and communication bit complexity of the original al-

gorithm while maintaining its fault-tolerance and con-

sistency. Since both implementations impose bounds on

the participation in the system, we explore the adoption

of “multi-speed” solutions based on computationally-

efficient algorithms. Our contributions are as follows:

– We introduce a new problem that is computationally

equivalent to the predicate used in [3]. We show that

the problem, and thus the computation of the pred-

icate, is NP-hard. The proof is by reduction to the

Maximal Biclique problem, a known NP-hard prob-

lem.

– We then devise a revised fast implementation, called

ccFast, which uses a new linear time predicate to

determine the value to be returned by each read op-

eration. The idea of the new predicate is to exam-

ine the replies received in the first communication

round of a read operation and determine how many

processes witnessed the maximum timestamp among

those replies. With the new predicate we reduce the

size of each message sent by the replicas, and we

prove rigorously that atomicity is preserved.

– We analyze the operation complexity of ccFast, in

terms of communication, computation, and message

length. For the computational complexity, we pro-

vide a linear time algorithm for the computation of

the new predicate. The algorithm utilizes buckets to

count the number of appearances of each timestamp

in the collected replies. We analyze the complexity of

the algorithm and prove that it correctly computes

the predicate of ccFast.

– We introduce a new “multi-speed” algorithm, ccHy-

brid, that allows operations to terminate in one or

two communication round-trips, and that does not

impose constraints on the number of readers. ccHy-

brid uses our linear predicate to determine the speed

of a read operation, and it requires at most one com-

plete slow operation per written value. This is similar

to the semifast algorithm Sf [11]. However, in con-

trast to Sf, in which processes rely on an NP-hard

predicate, it performs only linear time computation.

– Next we explore the use of our predicate in algo-

rithm OhSam [13]. We obtain a “multi-speed” al-

gorithm, called OhFast, that allows one and one-

and-a-half round-trip operations. In this algorithm

the decision of whether a slow read operation is nec-

essary is moved to the servers. When servers deter-

mine that a slow read is necessary, they perform a

relay phase to inform other servers before replying to

the reader. It is interesting that in OhFast not all

servers need to perform a relay for a single read oper-

ation. Some servers may reply directly to the reader,

whereas some others may perform a relay phase for

the same read. Thus a read operation may terminate

before receiving a reply from a relaying server.

– We use the NS3 discrete event simulator to obtain ex-

perimental results comparing the performance of five

algorithms: ABD, OhSam, ccHybrid, OhFast,

and Sf. ABD sets the baseline for other algorithms,

while OhSam sets the baseline for the operations

that use one and a half rounds. Algorithm Sf is used

to assess how computation impacts the latency of

operations. We evaluate our algorithms under dif-

ferent scenarios by changing the number of partic-

ipants, the frequency of operations, and using two

network topologies: (i) a topology where servers are

distributed evenly over the network, and (ii) a topol-

ogy that resembles a datacenter where servers are

concentrated in close proximity and communicate

through high bandwidth links. Our results show that

the proposed algorithms outperform the “one speed”

algorithms (i.e., ABD and OhSam) in all scenarios,

reducing the latency per operation to less than half

in most cases. Compared with the semifast “multi-

speed” algorithm Sf, our algorithms achieve a simi-

lar read latency, even though the scenarios explored

were extremely favorable for Sf, since we observed

that practically all of its operations were fast and

the NP-hard predicate evaluations were not heavy

(mainly due to the good communication conditions).

Finally, as expected, we observed that the topology

has a substantial impact on the algorithms that use

one and a half round operations.

Our results shed new light on the operation latency in

SWMR atomic object implementations in asynchronous

message-passing systems, and motivate the need for as-

sessing the performance of fast implementations both in

terms of communication and computation efficiencies.

2 Model

We assume a system consisting of three distinct sets

of processes: a single writer process with identifier w,

a set R of readers, and a set S of replica servers; we

let I = {w} ∪ R ∪ S. The values of objects come from

the set V . The writer is the only process that is al-

lowed to write a new value of the object, the readers can

read the value of an object, and each server maintains a

copy of the object value, providing redundancy needed

4 Antonio Fernández Anta et al.

Algorithm WE RE WC RC WM RM Participation Complexity

ABD [2] 2 4 O(1) O(|S|) 2|S| 4|S| Unbounded Constant

Fast [3] 2 2 O(1) O(|S|2 · 2|S|) 2|S| 2|S| |R| < |S|
f
− 2 NP-Hard

Sf [11] 2 2 or 4 O(1) O(|S|2 · 2|S|) 2|S| O(4|S|) |V| < |S|
f
− 1 NP-Hard

OhSam [13] 2 3 O(1) O(|S|) 2|S| 2|S|+ |S|2 Unbounded Constant

ccFast (this paper) 2 2 O(1) O(|S|) 2|S| 2|S| |R| < |S|
f
− 2 Linear

ccHybrid (this paper) 2 2 or 4 O(1) O(|S|) 2|S| O(4|S|) Unbounded Linear

OhFast (this paper) 2 2 or 3 O(1) O(|S|) 2|S| O(|S|2) Unbounded Linear

Table 1: Communication, Computation, Message Complexities, Participation Bounds, and Predicate Computational Class.
(WE/RE: write/read-communication exchanges, WC/RC: write/read-computation, WM/RM: write/read-number of

messages). V is the set of virtual nodes.

to ensure availability in case of failures. The system is

asynchronous and processes communicate by exchang-

ing point-to-point messages. The writer, any subset of

readers, and up to f servers (f < |S|/2) may crash

without notice.

An algorithm A is a collection of processes, where

process Ap is assigned to processor p ∈ I. Each process

maintains a state containing a set of variables. The state

of A is a vector of states of all processes. Processes op-

erate by performing steps consisting of (i) receiving a

message, (ii) performing local computation, (iii) send-

ing a message. Each step by process p causes its state

to change from a pre-state σp to a post-state σ′p.

A process p crashes in an execution if it stops tak-

ing steps; otherwise p is correct. Each read or write

operation implementation has invocation and response

steps. An operation is complete in an execution if both

the invocation and the matching response steps occur

in the execution; otherwise the operation is incomplete.

We deal only with well-formed executions: any process

that invokes an operation does not invoke any other

operation before the matching response to the current

operation. An operation π precedes an operation π′ in

an execution, denoted by π → π′, if the response of π

appears before the invocation of π′. Two operations are

concurrent if neither precedes the other.

Correctness of an implementation of an atomic

read/write object is defined in terms of the atomicity

and termination properties. The termination property

requires that any operation invoked by a correct process

eventually completes. Atomicity of an implementation

is defined following [16]. If all the read and write op-

erations that are invoked on an object complete in an

execution, then the read and write operations can be

partially ordered by an ordering ≺, so that the follow-

ing properties are satisfied:

P1. The partial order is consistent with the external or-

der of invocation and responses, that is, there do not

exist operations π1 and π2, such that π1 completes

before π2 starts, yet π2 ≺ π1.

P2. All write operations are totally ordered and every

read operation is ordered with respect to all the

writes.

P3. Every read operation ordered after any writes re-

turns the value of the last write preceding it in the

partial order, and any read operation ordered before

all writes returns the initial value of the object.

For the rest of the paper we assume a single object

memory system. As atomicity/linearizability is a local

property for each process, a complete atomic memory

system is obtained by composing several single object

implementations [16].

Efficiency Metrics. We measure the efficiency of op-

erations in terms of: (i) message complexity, i.e. the

worst-case number of messages exchanged during an

operation, and (ii) operation latency, i.e. the computa-

tion time and the communication delays incurred by an

operation. Computation time accounts for the compu-

tation steps the algorithm performs in each operation.

Communication delays are measured as the number of
communication exchanges, following [13].

A communication exchange during an operation in

an execution is defined as follows. Let the operation

protocol consist of a sequence of sends (or broadcasts)

of typed messages and the corresponding receives. The

collection of send events for a specific typed message

and the corresponding receive events between the op-

eration invocation and the response constitute a single

communication exchange.

Using this definition, implementations such as

ABD, are structured in terms of rounds, where each

round consists of two communication exchanges: a

broadcast, initiated by the process executing an opera-

tion, and a convergecast of responses to the initiator. A

fast operation as in [11,3] involves two communication

exchanges (or one round), and a slow operation as in

[2,10,11] consists of four communication exchanges (or

two rounds). A read operation in [13] consists of three

communication exchanges (or equivalently one and a

half rounds).

Tractable low-delay atomic memory? 5

3 Fastness in Prior Work and Implications for

Atomic Memory Implementations

Algorithm Fast by Dutta et al. in 2004 [3] is the first

to present an atomic object implementation for the

message-passing environment where all read and write

operations take a single communication round trip. It

is also shown that in any fast implementation the num-

ber of readers |R| must be constrained with respect to

the number of servers, |S|, and the number of server

failures, f , so that |R| < |S|
f − 2.

Algorithm Fast used timestamps associated with

values as in ABD [2] to impose an order on the write op-

erations. The write operation is almost identical to the

one-round write in [2]: the writer increments its local

timestamp, and broadcasts the timestamp with the new

value to the servers. The read operation is very different

as it takes a single round to complete. To enable single

round read operations, Fast uses two mechanisms: (i) a

recording mechanism at the servers, and (ii) a predicate

that uses the server records at the readers. Each server

records all the processes that witness its local times-

tamp, in a set called seen. This set is reset whenever

the server learns a new timestamp. Each reader collects

the server replies (in the form (server,message) pair)

that contain the maximum timestamp, maxTs, in a set

maxAck, and then examines the following predicate:

∃α ∈ [1, . . . , |R|+ 1] ∧ MS ⊆ {m.seen : (s,m) ∈ maxAck} s.t.

(1)

|MS | ≥ |S| − αf ∧ |
⋂

sn∈MS

sn| ≥ α

(2)

In a high level, the idea of the predicate lies on the

observation that for any two read operations that wit-

ness the same maxTs, their respective sets of servers

that replied maxTs may differ by at most f members

(where f is the maximum number of servers that may

crash). In particular, if the writer w completes by send-

ing messages to |S|−f servers, then a subsequent reader

r1 may only observe |S| − 2f of them (missing the f

servers that may be faulty). In this case each of the

|S|−2f servers could record a seen = {w, r1} and hence

the intersection of all those seen sets will have cardinal-

ity 2. In the case now where w is incomplete, writing

to just |S|− 2f servers, r1 may see the same amount of

servers replying with the latest write (not distinguish

the two executions), while a subsequent read from a

reader r2 may witness only |S|− 3f servers to have the

latest write. All of those servers however will have a

seen set equal to {w, r1, r2} and hence with an intersec-

tion of cardinality 3. In general, if a writer “reaches”

|S| − (α − 1)f , for 2 ≤ α ≤ |R|, servers then a subse-

quent reader may witness at least |S|−αf servers with

the latest value. Thus inductively, a reader may return

the latest value when witnessing |S|−αf seen sets with

intersection of cardinality ≥ α, hence the predicate fol-

lows.

In other words, the reader looks at the seen sets

of the servers that replied, and tries to determine

whether “enough” processes witnessed the maximum

timestamp, maxTs. If the predicate holds, the reader

returns the value associated with the maximum times-

tamp. Otherwise it returns the value associated with

the previous timestamp. Notice here that the predicate

examines which processes witnessed the latest times-

tamp as it examines the intersection of the seen sets.

To remove the limitation on the number of readers,

Georgiou et al. [11] developed an approach, they call

Sf, for grouping the readers into logical sets, called

virtual groups, and used it in an algorithm that al-

lows some read operations to take two rounds (or 4

communication exchanges). Essentially, for some reads,

the algorithm performs the second (“write”) phase as

in ABD. In particular, each server records the virtual

group of each reader requesting its local value, and at-

taches to each reply the set of virtual group identifiers

he recorded. If the same server is contacted by two read-

ers from the same virtual group, the set will only con-

tain one instance of the group identifier. Upon receiv-

ing a reply, the reader applies a similar predicate as

Eq. (1) and (2) from [3], on the set of virtual nodes. If

|
⋂
sn∈MS sn| = α (from Eq. (2)), then the reader per-

forms the second phase before completing. Otherwise,

the read is fast. With this use of the predicate the par-

ticipation constraint presented in [3] is now imposed on

the number of virtual nodes V, that is |V| < |S|
f − 1.

As each virtual group may grow arbitrarily, then Sf

supports unbounded number of readers.

Hadjistasi et al. [13] studied the possibility of having

read and write operations that take (at most) 3 com-

munication exchanges, or as they term this, “one and a

half round.” They present a SWMR algorithm, called

OhSam, where writes take just one round (2 communi-

cation exchanges), and reads always take one and a half

rounds (3 communication exchanges). The main idea

here is to have servers to exchange information about

the operations prior to replying to the invoking pro-

cess. OhSam uses negligible local computation at the

processors, as each operation performs only basic com-

parisons. However, the all-to-all server communication

in every operation makes the algorithm better suited

for environments where the servers are well connected.

Table 1 summarizes the efficiency of these algo-

rithms and the three algorithms presented in this paper.

6 Antonio Fernández Anta et al.

It also presents any constraints on the participation in

the service. Notice that the goal is to minimize commu-

nication without incurring high computation overheads

in the system. Let us now compare algorithms ABD,

Fast, Sf, and OhSam in more detail.

Communication Complexity. Write operations in

algorithms ABD, Fast, Sf, and OhSam take 2 com-

munication exchanges, as the sole writer sends messages

to all servers and waits for a majority to reply before

completing. As previously mentioned, read operations

take 2 communication exchanges in Fast, 2 or 4 in Sf,

3 in OhSam, and 4 in ABD.

Computation Complexity. The write operation in

all four algorithms terminates once the appropriate

number of servers reply, without imposing any addi-

tional computation. However, the reduction in the num-

ber of communication exchanges has a negative impact

on the computational complexity of read operations in

Fast and Sf.

In algorithm Fast [3] the computation performed

by read operations is prohibitive. If one tries to ex-

amine all possible subsets MS of S, then we obtain

2|S| possibilities. If one restricts this space to include

only the subsets with size |MS | = |S| − αf for all

α ∈ [1, . . . , |R|+ 1] (namely 1 ≤ |MS | ≤ |S| − f), then

we may examine up to 2(|S|−f) different subsets. Recall

also that each seen set contains identifiers from the set

R∪ {w}, and hence at most |R|+ 1 elements. To com-

pute the intersection we need to check for each element

if it belongs in all the seen sets. As MS may include

|S| − f servers (and thus as many seen sets) the com-

putation of the intersection may take (|S|− f)(|R|+ 1)

comparisons. As |R| is bounded by |S| then the previ-

ous quantity is bounded by O(|S|2). So that leads to an

upper bound of O(|S|2 · 2|S|).
Since Sf [11] adopts the same predicate over the vir-

tual nodes, it suffers from the same computation over-

head. The main difference in [11] from the work in [3],

is that the predicate does not examine all the possible

subsets of readers, but rather it examines all the pos-

sible subsets of virtual nodes that observed the latest

timestamp. Therefore, the seen set may contain at most

|V|+ 1 elements, and hence the computation burden in

[11] could be improved if readers could be concentrated

in as few virtual nodes as possible. However, according

to an analysis performed by Georgiou et al. in [8], the

fewer the virtual nodes in the service the more read

operations would have performed multiple communi-

cation rounds. This is due to the fact that fewer vir-

tual nodes will concentrate more readers and therefore

more read operations will observe the predicate condi-

tion that may lead to a second communication round.

Furthermore, fewer virtual nodes will delay the return

of a newly written value as the predicate will be vali-

dated only when the timestamp is propagated to more

servers in the system. For example, consider the case

where we place all the readers in a single virtual node.

In this case the seen set in each server may contain at

most 2 elements: the id of the writer and the id of the

single virtual node. The computation of the predicate

can be done efficiently in this case. However, since the

predicate is valid only if the seen sets contain more than

|S| − αf common elements, for α ∈ [1, 2], then reads

may be fast only when a write operation is completed.

Any read concurrent with the write operation will be

slow, defeating the communication performance of the

algorithm. Thus, in order to reduce the communication

overhead of the algorithm, more virtual nodes are nec-

essary increasing this way the computational overhead

of the predicate.

If indeed the computation in [3,11] is exponential

(in the number of servers), then the local computation

time will proverbially explode even when the number

of servers is modest.

At the same time, the computation complexity at

the reader process in both ABD [2] and OhSam [13] is

linear in the number of servers, since the reader needs to

process at most one reply from each server to compute

the maximum timestamp.

Message Complexity. Finally, for each write opera-

tion in any algorithm, at most |S| messages are sent to

all servers, and at most |srvSet| messages will be re-

ceived by the writer as replies. The read operation for

algorithms ABD, Fast, and Sf, depends on the num-

ber of communication exchanges executed by the al-

gorithm as there exists direct communication between

each client and each server. Thus, ABD requires 4|S|,
Fast requires 2|S|, and Sf requires at most 4|S| mes-

sages per read operation. Algorithm OhSam includes a

server-to-server communication for each read operation,

and hence its message complexity rises to 2|S| + |S|2
messages, including the client-to-server messages (2|S|),
and the server-to-server communication (|S|2).

3.1 Added Knowledge

The works presented thus far [3,11,13], mainly focused

on minimizing the communication burden of atomic

shared memory emulations as initially proposed by

ABD [2]. In this work we examine the problem from

a different perspective: except from the communication

burden we also consider the computation demands of

the more efficient approaches and we examine whether

such demands will have a negative impact on the overall

performance of these algorithms. Such parameter was

overlooked at previous solutions as the main focus was

Tractable low-delay atomic memory? 7

the reduction of the communication overhead even in

the expense of higher computational costs. To this end,

we prove in the next section that the predicate used

in [3,11] is NP-complete potentially increasing the la-

tency of computing the predicate exponentially as the

number of replicas and clients increases in the system.

To solve this issue we revise the approach of the

previous works, and we examine whether the predicate

can be computed efficiently. We devise a new predicate

that does not rely on the membership but rather on the

size of the seen sets. We demonstrate how the predicate

can be used in the Fast algorithm [3], without affecting

the correctness (atomicity) and the efficiency in terms

of the communication burden. We then show the us-

age of the predicate through the ccHybrid algorithm

to allow some slow read operations while enabling the

participation of unbounded readers in the service. Note

that this algorithm takes a different approach to the

Sf [11] algorithm as it does not group the readers into

virtual nodes. Using ccHybrid we wanted to examine

how the algorithm performs if the only metric it exam-

ines to perform slow reads is the size of the seen set.

Algorithm Sf, should be able to utilize the predicate

directly, without any impact on its correctness and the

communication efficiency.

Finally we improve the computational efficiency

in algorithms that perform three communication ex-

changes. For this reason we embed our predicate in the

OhSam algorithm presented in [13]. For this algorithm

we move our predicate evaluation to the servers instead

of the clients, to help them skip an extra message, in

case enough processes know about the latest timestamp

in the service. This is the first attempt to improve the

three communication exchange algorithm.

4 Formulation and Hardness of the Predicate

in Fast

We formulate the predicate used in Fast with the fol-

lowing computational problem.

Problem 1 Input: Two sets U1 = {s1, s2, . . . , sn},
U2 = {p1, p2, . . . , pk}, where ∀si ∈ U1, si ⊆ U2. More-

over, we are given two integers α ≥ 1 and f ≥ 0 such

that n− αf ≥ 1.

Goal: Is there a set M ⊆ U1 such that | ∩s∈M s| ≥ α

and |M | ≥ n− αf?

To show the computational equivalence of Prob-

lem 1 to the predicate in Fast, we need to provide

a polynomial-time reduction of Problem 1 to the pred-

icate in Fast and vice versa. This is captured by the

following theorem.

Theorem 1 Problem 1 is computationally equivalent

to the predicate used in Fast.

Proof The Fast predicate accepts as inputs the set

of seen sets collected from the replies, say Seen =

{m.seen : (s,m) ∈ maxAck}, the set of reader and

writer processes R ∪ {w}, the maximum number of

server failures f ′, and the number of servers |S|. For

some α′ ∈ [1, . . . , |R| + 1], the predicate specifies the

set MS ⊆ Seen with properties as defined in formulas

(1) and (2).

Given an instance of Problem 1 we can transform it

to an instance of the predicate as follows. Let S = {i :

si ∈ U1}, Seen = U1, R∪{w} = U2, f ′ = f and α′ = α.

Notice that α ∈ [1, |U2|+ 1] as every si ⊆ U2, M ⊆ U1,

and | ∩s∈M s| ≥ α. Thus, by our transformation α′ ∈
[1, |R|+ 1]. Solving Fast for α′ we get a set of server-

message pairs, MS, and we can set M = MS as the

solution for Problem 1. Hence, by reduction, if Fast

can be solved in polynomial time then so is Problem 1.

In the other direction, given an instance of the pred-

icate in Fast we can transform the input to an in-

stance of Problem 1. We set f = f ′, U2 = R ∪ {w}
and U1 = Seen ∪ EmptySeen where EmptySeen is a

set of empty sets, as many as the servers that do not

add a seen set in Seen. Thus, EmptySeen is used as

a padding, so that n = |U1| becomes equal to |S|. For

each α′ ∈ [1, . . . , |R| + 1] we run an instance of Prob-

lem 1, with α = α′. Solving Problem 1, we get a set

of subsets M s.t. | ∩s∈M s| ≥ α and |M | > n − αf .

So, if we set MS = M then |MS| ≥ |S| − α′f ′ and

|
⋂
sn∈MS sn| ≥ α′.

We now prove that the Problem 1 is NP-hard via

a reduction from the decision version of the Maximum

Edge Biclique problem defined below. The reduction is

similar to the one in [18] for showing that the Maximum

k-Intersection Problem is NP-hard.

Definition 1 (Maximum Edge Biclique Prob-

lem) Given a bipartite graph G = (X,Y,E) a biclique

consists of two sets A ⊆ X, B ⊆ Y such that ∀a ∈ A,

∀b ∈ B, (a, b) ∈ E. The size of a biclique is defined the

number of edges in the biclique. The goal is to decide

if the given graph G has a biclique of size at least c.

The Maximum Edge Biclique Problem is NP-

complete [7].

Theorem 2 Problem 1 is NP-hard.

Proof We show that if we can solve Problem 1 in poly-

nomial time, then we can solve the decision version of

the Maximum Edge Biclique problem in polynomial

time. Given an instance of the biclique problem, i.e.,

8 Antonio Fernández Anta et al.

a bipartite graph G = (X,Y,E), we construct the fol-

lowing instance of Problem 1. First, let U2 = Y . Then,

each element si ∈ U1 corresponds to a vertex v ∈ X

such that si = {u ∈ Y : (v, u) ∈ E}. See Figure 1 for

an example.

Fig. 1: The left side of the graph (nodes A, B and C)
corresponds to the elements of the set U1 and the right side
(nodes 1,2 and 3) corresponds to the elements of the set U2.

Thus, A = {1, 2}, B = {2, 3} and C = {1, 2, 3}. The
maximum edge biclique in this example has two nodes on

each side, thus has size 4. In the figure, one of the two
maximum edge bicliques is emphasized with bold edges.

In order to decide if a biclique of size at least c exists,

we solve |X| instances of Problem 1 where α and f are

set such that α · (n− αf) = c. If there exists a positive

instance of Problem 1 among those |X| checked, then

there exists a biclique of size at least c. Otherwise, no

such biclique exists.

We focus now on two particular values of α and f

such that α · (n − αf) = c and we prove the graph G

has a biclique of size c with α vertices in the set X and

n−αf vertices on the other side, if and only if a subset

M that satisfies the constraints of Problem 1 exists.

First, given a biclique A ∪ B of size c with |B| =

α, then the set M ⊆ U1 contains the elements of U1

associated with the vertices in A. Since the biclique

A ∪B has size c, it follows that the number of the sets

in M is larger than c/α = n− αf .

Conversely, given a set M of size n− αf whose ele-

ments have intersection at least α, we can find a biclique

of size c = α · (n− αf). The elements A ⊆ X of the bi-

clique are those corresponding to the elements of the set

M . Since the elements in the set M have intersection

greater than or equal to α, we have that the common

neighborhood of the vertices in A is greater than or

equal to α(n− αf). Thus, the size of the biclique is at

least c = α · (n− αf).

5 Algorithm ccFast: Refining “Fastness” for

Atomic Reads

In this section we modify the algorithm presented in

[3] to make it even “faster”. Since we allow only single

round-trip operations, the new algorithm adheres to the

bound presented in [3] and [4] regarding the number of

readers. Thus, a solution is possible only if |R| < |S|
f −2.

Also, from the results in [3,11], it follows that such a

solution is impossible in the MWMR model. To expe-

dite the calculation of the predicate we aim to eliminate

the use of sets in the predicate and we focused on the

question: “Can we preserve atomicity if we know how

many and not which processes read the latest value

of a server?” An answer to this question could yield

two benefits: (i) reduce the size of messages, and (ii)

reduce the computation time of the predicate. We pro-

vide a positive answer to this question and we present a

new algorithm, called ccFast, that preserves commu-

nication and is computationally faster than algorithm

Fast.

Algorithm 1 presents the formal specification of cc-

Fast. Here we present a high level description of each

protocol in the algorithm. The counter variables used

in the algorithm are solely used by processes to dis-

tinguish “fresh” from “stale” messages that may arrive

out of order due to asynchrony. In the rest of the de-

scription we will not refer to the counters, but rather

we assume that the messages received by each process

are fresh messages.

Write Protocol. To perform a write operation, the

writer w calls function write(val). During the opera-

tion the writer stores the value to be written in vari-

able v and the previous written value in variable vp

(A1:L8). Then it increments its local timestamp vari-

able ts (A1:L9), and sends a write request along with

the triple 〈ts, v, vp〉 to all servers and waits for |S| − f
replies. Once those replies are received the operation

terminates.

Server Protocol. The server protocol contains a

recording mechanism which generates information that

is used by each read operation to determine the value

of the register. Each server s ∈ S maintains a times-

tamp variable along with the values associated with

that timestamp. In addition, the server maintains a set

of reader and writer identifiers, called seen. Initially

each server is waiting for read and/or write requests.

When a request is received the server examines if the

timestamp ts′ attached in the request is larger than its

local timestamp ts (A1:L41). If ts′ > ts, the server up-

dates its local timestamp and values to be equal to the

ones attached in the received message (A1:L42), and

resets its seen set to include only the identifier of the

process that sent this message (A1:L43); otherwise the

server just inserts the identifier of the sender in the seen

set (A1:L45). Then, the server replies to the sender by

sending its local 〈ts, v, vp〉 triple, and the size of its

recording set |seen|. This is a departure from the Fast

Tractable low-delay atomic memory? 9

Algorithm 1 Read, Write and Server protocols of algorithm ccFast

1: At writer w
2: Components:
3: ts ∈ N+, v, vp ∈ V,wcounter ∈ N+

4: Initialization:
5: ts← 0, v ← ⊥, vp← ⊥, wcounter ← 0
6: function Write(val : input)
7: vp← v
8: v ← val
9: ts← ts+ 1
10: wcounter ← wcounter + 1
11: wAck ← ∅
12: broadcast(〈writeRequest, ts, v, vp, w,wcounter〉) to S
13: wait until (|wAck| = |S| − f)
14: return
15: end function

16: Upon receive m from s
17: if (m.counter = wcounter) then
18: wAck ← wAck ∪ {(s,m)}
19: end if

20: at each server si
21: Components:
22: ts ∈ N+, seen ⊆ R ∪ {w}, v ∈ V, vp ∈ V
23: Counter[1..|R|+ 2]: array of int
24: Initialization:
25: ts← 0, seen← ∅, v ← ⊥, vp← ⊥
26: Counter[i]← 0 for i ∈ R ∪ {w}

27: Upon receive(〈writeRequest, ts′, v′, vp′, w, wcounter〉)
28: if (Counter[w] < wcounter) then
29: Counter[w]← wcounter
30: if (ts < ts′) then
31: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
32: seen← {w}
33: else
34: seen← seen ∪ {w}
35: end if
36: send(〈writeAck, Counter[w], s〉) to w
37: end if

38: Upon receive(〈readRequest, ts′, v′, vp′, r, rcounter〉)
39: if (Counter[r] < rcounter) then
40: Counter[r]← rcounter
41: if (ts′ > ts) then
42: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
43: seen← {r}
44: else
45: seen← seen ∪ {r}
46: end if
47: send(〈readAck, ts, v, vp, |seen|, prop, Counter[r]〉) to r
48: end if

49: at each reader ri
50: Components:
51: ts ∈ N+, maxTS ∈ N+, v, vp ∈ V, rcounter ∈ N+

52: srvAck ⊆ S ×M, maxTSmsg ⊆M
53: Initialization:
54: ts← 0, maxTS ← 0, v ← ⊥, vp← ⊥, rcounter ← 0
55: srvAck ← ∅, maxTSmsg ← ∅
56: function Read
57: rcounter ← rcounter + 1
58: send(〈readRequest, ts, v, vp, r, rcounter〉) to S
59: wait until (|srvAck| = |S| − f)
60: maxTS ← max({m.ts′|(s,m) ∈ srvAck})
61: maxAck ← {(s,m)|(s,m) ∈ srvAck ∧ m.ts′ = maxTS}
62: 〈ts, v, vp〉 ← m.〈ts′, v′, vp′〉 for (∗,m) ∈ maxAck
63: if ∃α ∈ [1, |R|+ 1] s.t.
64: MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} ∧
65: |MS | ≥ |S| − αf then
66: return(v)
67: else
68: return(vp)
69: end if
70: end function

71: Upon receive m from s
72: if (m.counter = rcounter) then
73: srvAck ← srvAck ∪ {(s,m)}
74: end if

algorithm where the server was attaching the complete

seen set.

Read Protocol. The read protocol is the most in-

volved. When a reader process invokes a read opera-

tion it sends read requests along with its local 〈ts, v, vp〉
triple to all the servers, and waits for |S| − f of them

to reply. Once the reader receives those replies, it: (i)

discovers the maximum timestamp, maxTS, among the

messages, (ii) collects all the messages that contained

maxTS in a set maxAck, and (iii) updates its local

〈ts, v, vp〉 triple to be equal to the triple attached in

one of those messages (A1:L60-L62). Then it runs the

following predicate on the set maxAck (A1:L65):

∃α ∈ [1, |R|+ 1] s.t. (3)

MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} ∧ (4)

|MS | ≥ |S| − αf (5)

The predicate examines how many processes the

maximum timestamp has been sent to. If |S| − αf , or

more, servers sent this timestamp to more than α pro-

cesses, for α between [1, . . . , |R|+1], then the predicate

is true and the read operation returns the value asso-

ciated with maxTS, namely v; otherwise the read op-

eration returns the value associated with maxTS − 1,

namely vp.

Idea of the predicate. The purpose of the predicate is

to allow a read operation to predict the value that was

potentially returned by a preceding read operation. To

understand the idea behind the predicate consider the

following execution, ξ1. Let the writer perform a write

operation ω and receive replies from a set S1 of |S| − f
servers. Let a reader follow and perform a read oper-

ation ρ1 that receives replies from a set of servers S2
again of size |S| − f that misses f servers that replied

to the write operation. Due to asynchrony, an opera-

tion may miss a set of servers if the messages of the

operation are delayed to reach any servers in that set.

So the two sets intersect in |S1 ∩S2| = |S|− 2f servers.

Consider now ξ2 where the write operation ω is not

complete and only the servers in S1 ∩ S2 receive the

write requests. If ρ1 receive replies from the same set

S2 in ξ2 then it won’t be able to distinguish the two ex-

ecutions. In ξ1 however the read has to return the value

written, as the write in that execution precedes the read

10 Antonio Fernández Anta et al.

operation. Thus, in ξ2 the read has to return the value

written as well. If we extend ξ2 by another read opera-

tion ρ2 from a third process, then it may receive replies

from a set S3 missing f servers in |S1 ∩ S2|. Thus it

may see the value written in |S1 ∩ S2 ∩ S3| = |S| − 3f

servers. But since there is another read that saw the

value from these servers (ρ1) then ρ2 has to return the

written value to preserve atomicity. Observe now that

ρ1 saw the written value from |S|−2f servers and each

server replied to both {w, ρ1}, and ρ2 saw the written

value from |S| − 3f and each server replied to all three

{ω, ρ1, ρ2}. By continuing with the same logic, we de-

rive the predicate that if a read sees a value written in

|S|−αf servers and each of those servers sent this value

to α other processes then we return the written value.

Notice that in order for a subsequent operation to

obtain a written value from at least a single server, it

must be the case that the current operation observes

the value in |S| −αf > f . Solving this equation results

in α < |S|
f − 1. But α is the number of processes in

the system. As the maximum number of processes is

|R| + 1, hence the bound on the number of possible

reader participants |R| < |S|
f − 2.

Algorithm Correctness

To show that the algorithm is correct we need to show

that each correct process terminates (liveness) and that

the algorithm satisfies the properties P1 - P3 of atomic-

ity (safety) as presented in Section 2 following [16]. As

the main departure of ccFast from Fast is the predi-

cate logic, some of the proofs that follow are very sim-

ilar to the ones presented in [3]. The lack of knowledge

of which processes witnessed a particular value, raises

challenges in proving that consistency is preserved.

Liveness. Termination is trivially satisfied with respect

to our failure model: up to f servers may fail and each

operation waits for no more than |S| − f replies.

Atomicity. In ccFast we associate values with times-

tamps to order the read and write operations. By the

atomicity definition, for each execution of the algorithm

there must exist a partial order≺ on the operations that

satisfy conditions P1 - P3. Let tsπ be the timestamp at

the completion of an operation π, when π is a write,

and the timestamp associated with the returned value

when π is a read. We define the partial order as follows.

For two operations π1 and π2:

– if π1 is any operation and π2 is a write, then π1 ≺ π2
if tsπ1

< tsπ2

– if π1 is a write and π2 is a read, then π1 ≺ π2 if

tsπ1
≤ tsπ2

The rest of the order is established by transitivity, with-

out ordering the reads with the same timestamps.

Monotonicity allows the ordering of the values ac-

cording to their associated timestamps. So Lemma 2

shows that the ts variable maintained by each process

in the system is monotonically increasing. Let us first

make the following observation:

Lemma 1 In any execution ξ of the algorithm, if a

server s replies with a timestamp ts at time T , then s

replies with a timestamp ts′ ≥ ts at any time T ′ > T .

Proof A server attaches in each reply its local times-

tamp. Its local timestamp in turn is updated only when-

ever the server receives a higher timestamp. So the

server local timestamp is monotonically non-decreasing

and the lemma follows.

The following is also true for a server process.

Lemma 2 In any execution ξ of the algorithm, if a

server s receives a timestamp ts at time T from a pro-

cess p, then s replies with a timestamp ts′ ≥ ts at any

time T ′ > T .

Proof If the local timestamp of the server s, tss, is

smaller than ts, then tss = ts. Otherwise tss does not

change and remains tss ≥ ts. In any case, s replies with

a timestamp tss ≥ ts to π. By Lemma 1 the server s

attaches a timestamp ts′ ≥ tss, and hence ts′ ≥ ts to

any subsequent reply.

Now we show that the timestamp is monotonically

non-decreasing for the writer and the reader processes.

Lemma 3 In any execution ξ of the algorithm, the

variable ts stored in any process is non-negative and

monotonically non-decreasing.

Proof The lemma holds for the writer as it changes its

local timestamp by incrementing it every time it per-

forms a write operation. The timestamp at each reader

becomes equal to the largest timestamp the reader dis-

covers from the server replies. So it suffices to show that

in any two subsequent reads from the same reader, say

ρ1, ρ2 s.t. ρ1 → ρ2, ρ2 returns a ts′ that is bigger or

equal to the timestamp ts returned by ρ1. This can

be easily shown by the fact that ρ2 attaches the max-

imum timestamp discovered by the reader before the

execution of ρ2. Say this is ts discovered during ρ1. By

Lemma 2 any server that will receive the message from

ρ2 will reply with a timestamp tss ≥ ts. So ρ2 will dis-

cover a maximum timestamp ts′ ≥ ts. If ts′ = ts then

the predicate will hold for α = 1 for ρ2 and thus it

stores ts′ = ts. If ts′ > ts then ρ2 stores either ts′ or

ts′ − 1. In either case it stores a timestamp greater or

equal to ts and the lemma follows.

Tractable low-delay atomic memory? 11

Now we can show that if a read operation succeeds

a write operation, then it returns a value at least as

recent as the one written.

Lemma 4 In any execution ξ of the algorithm, if a

read ρ by r1 succeeds a write operation ω by w that

writes timestamp tsω, i.e. ω → ρ, and returns a times-

tamp tsρ, then tsρ ≥ tsω.

Proof According to the algorithm, the write operation

ω communicates with a set of |Sw| = |S| − f servers

before completing. Let |S1| = |S| − f be the number of

servers that replied to the read operation ρ. The inter-

section of the two sets is |Sw ∩S1| ≥ |S|− 2f and since

f < |S|/2 there exists at least a single server s that

replied to both operations. Each server s ∈ Sw ∩ S1

replies to ω before replying to ρ. Thus, by Lemma 2

and since s receives the message from ω before reply-

ing to any of the two operations, then it replies to ρ

with a timestamp tss ≥ tsω. Thus there are two cases

to investigate on the timestamp: (1) tss > tsω, and (2)

tss = tsω.

Case 1: In the case where tss > tsω, ρ will observe

a maximum timestamp maxTS ≥ tss. Since ρ returns

either tsρ = maxTS or tsρ = maxTS − 1, then tsρ ≥
tss − 1. Thus, tsρ ≥ tsω as desired.

Case 2: In this case every server in s ∈ Sw ∩S1 replies

with a timestamp tss = tsω. The read ρ may observe a

maximum timestamp maxTS ≥ tss. If maxTS > tss,

then, with similar reasoning as in Case 1, we can show

that ρ returns tsρ ≥ tsω. So it remains to investigate

the case where maxTS = tss = tsω. In this case, at
least |Sw ∩ S1| = |S| − 2f servers replied with maxTS

to ρ. Also for each s ∈ Sw ∩ S1, s included both the

writer identifier w and r1 before replying to ω and ρ

respectively. So s replied with a size at least s.views ≥ 2

to ρ. Thus, given that |R| ≥ 2, the predicate holds for

α = 2 and the set Sw ∩ S1 for ρ, and hence it returns a

timestamp tsρ = tsω. And the lemma follows.

So now it remains to show that in two succeeding

read operations, the latest operation returns a value

that is the same or greater than the value returned by

the first read. More formally:

Lemma 5 In any execution ξ of the algorithm, if ρ1
and ρ2 are two read operations such that ρ1 → ρ2, and

ρ1 returns tsρ1 , then ρ2 returns tsρ2 ≥ tsρ1 .

Proof Let the two operations ρ1 and ρ2 be executed

from the same process, say r1. As explained in Lemma

3, ρ2 will discover a maximum timestamp maxTS ≥
tsρ1 . If maxTS > tsρ1 , then ρ2 returns either tsρ2 =

maxTS or tsρ2 = maxTS − 1, and thus in both cases

tsρ2 ≥ tsρ1 . It remains to examine the case where

maxTS = tsρ1 . Since ρ1 → ρ2, then any message sent

during ρ2 contains timestamp tsρ1 . By Lemma 2, every

server s that receives the message from ρ2 replies with

a timestamp tss ≥ tsρ1 . Since maxTS = tsρ1 , then it

follows that all |S| − f servers that replied to ρ2, sent

the timestamp tsρ1 . Before each server replies adds r1
in their seen set. So they include a views ≥ 1 in their

messages. Thus, the predicate holds for ρ2 for α = 1

and returns tsρ2 = maxTS = tsρ1 .

For the rest of the proof we assume that the read op-

erations are invoked from two different processes r1 and

r2 respectively. Let maxTS1 be the maximum times-

tamp discovered by tsρ1 . We have two cases to consider:

(1) ρ1 returns tsρ1 = maxTS1 − 1, or (2) ρ1 returns

tsρ1 = maxTS1.

Case 1: In this case ρ1 returns tsρ1 = maxTS1 − 1. It

follows that there is a server s that replied to ρ1 with

a timestamp maxTS1. This means that the writer in-

voked the write operation that tries to write a value

with timestamp maxTS1. Since the single writer in-

vokes a single operation at a time (by well-formedness),

it must be the case that the writer completed writing

timestamp maxTS1−1 before the completion of ρ1. Let

that write operation be ω. Since, ρ1 → ρ2, then it must

be the case that ω → ρ2 as well. So by Lemma 4, ρ2
returns a timestamp tsρ2 greater or equal to the times-

tamp written by ω, and thus tsρ2 ≥ maxTS1 − 1 ⇒
tsρ2 ≥ tsρ1 .

Case 2: This is the case where ρ1 returns tsρ1 =

maxTS1. So it follows that the predicate is satisfied

for ρ1, and hence ∃α ∈ [1, . . . , |R|] and a set of servers

M1 such that every server s ∈M1 replied with the max-

imum timestamp maxTS1 and a seen set size s.views ≥
α, and |M1| ≥ |S|−αf . We know that ρ2 receives replies

from a set of servers |S2| = |S| − f before completing.

Let M2 be the set of servers that replied to ρ2 with

a maximum timestamp maxTS2. Since |R| < |S|
f − 2,

then

|M1| > |S| − (
|S|
f
− 2)f ⇒ |M1| > f

Hence, S2 ∩M1 6= ∅ and by Lemma 2 every server s ∈
S2 ∩M1 replies to ρ2 with a timestamp tss ≥ maxTS1.

Therefore maxTS2 ≥ maxTS1. If maxTS2 > maxTS1,

then ρ2 returns a timestamp tsρ2 ≥ maxTS2 − 1 ⇒
tsρ2 ≥ maxTS1 and hence tsρ2 ≥ tsρ1 .

It remains to investigate the case where maxTS2 =

maxTS1. Notice that any server in s ∈ S2 ∩M1 is also

in M2. Since ρ2 may skip f servers that reply to ρ1,

then |M1 ∩M2| ≥ |S| − (a + 1)f . Recall that for each

12 Antonio Fernández Anta et al.

server s ∈M1∩M2, s replied with a size s.views ≥ a to

ρ1. Also s adds r2 in its seen set before replying to ρ2.

So there are two subcases to examine: (a) either r2 was

already in the seen set of s, or (b) r2 was not a member

of s.seen.

Case 2(a): If r2 was already a part of the seen set of s,

then the size of the set remains the same. It also means

that r2 obtained maxTS1 from s in a previous read op-

eration, say ρ′2 from r2. Since each process satisfies well-

formedness, it must be the case that r2 completed ρ′2 be-

fore invoking ρ2. All the messages sent by ρ2 contained

maxTS1. So by Lemma 2 any server s ∈ S2 replies to

r2 with a timestamp tss = maxTS2 = maxTS1. In

this case |S|−f servers replied with maxTS2 and their

seen set contains at least r2, having s.views ≥ 1. Thus,

the predicate is valid with α = 1 for ρ2 which returns

tsρ2 = maxTS2 = maxTS1 = tsρ1 .

Case 2(b): This case may arise if r2 is not part of the

seen set of every server s ∈ M1 ∩M2. If r2 is part of

the seen set of some server s′ ∈ M1 ∩ M2, then this

is resolved by case 2(a). So each server s ∈ M1 ∩M2

inserts r2 in their seen sets before replying to ρ2. So if

the size of the set s.views = α when s replied to ρ1,

s includes a size s.views ≥ a + 1 when replying to ρ2.

Notice here that if α = |R|+1 for ρ1, then it means that

r2 was already part of the seen set of s when s replied

to ρ1. This case is similar to 2(a). So we assume that

α < |R|+ 1, in which case α+ 1 ≤ |R|+ 1. Since every

server s ∈M1 ∩M2 replies with s.views ≥ α+ 1 to ρ2
and since |M1∩M2| ≥ |S|−(α+1)f , then the predicate

holds for α+1 ≤ |R|+1 and the set MS = M1∩M2 for

ρ2, and thus ρ2 returns tsρ2 = maxTS2 = maxTS1 =
tsρ1 in this case as well. And this completes our proof.

Theorem 3 Algorithm ccFast implements a SWMR

atomic read/write register.

Proof We now use the lemmas above and the partial

order definition to reason about each of the three con-

ditions P1, P2 and P3.

P1. For any π1, π2 ∈ Π such that π1 → π2, it

cannot be that π2 ≺ π1.

When the two operations are reads and π1 → π2 holds,

then from Lemma 5 it follows that the timestamp of π2
is no less than the one of π1, i.e. ts2 ≥ ts1. If ts2 > ts1,

then by the ordering definition π1 ≺ π2 is satisfied.

When ts2 = ts1 then the ordering is not defined, thus it

cannot be the case that π2 ≺ π1. If π2 is a write, the sole

writer generates a new timestamp by incrementing the

largest timestamp in the system. By well-formedness

(see Section 2), any timestamp generated in any write

operation that precedes π2 must be smaller than ts2 .

Since π1 → π2, then it holds that ts1 < ts2. Hence,

by the ordering definition it cannot be the case that

π2 ≺ π1. Lastly, when π2 is a read and π1 a write,

then by Lemma 4 it follows that ts2 ≥ ts1. By the

ordering definition, it cannot hold that π2 ≺ π1 in this

case either.

P2. For any write ω ∈ Π and any operation π ∈ Π,

then either ω ≺ π or π ≺ ω.

If the timestamp returned from ω is greater than the

one returned from π, i.e. tsω > tsπ, then π ≺ ω fol-

lows directly. Similarly, if tsπ < tsω holds, then ω ≺ π

follows. If tsω = tsπ, then it must be that π is a read

and either discovered tsω from a set of servers and the

predicate is satisfied, or π discovered tsω + 1 but the

predicate is not satisfied. Thus, ω ≺ π follows.

P3. Every read operation returns the value of the

last write preceding it according to ≺ (or the initial

value if there is no such write).

Let ω be the last write preceding read ρ. From our def-

inition it follows that tsρ ≥ tsω. If tsρ = tsω, then ρ

either: (i) discovered tsω as the maximum timestamp

from some servers and their replies satisfied the predi-

cate, or (ii) discovered the value written by some write

ω′ with timestamp tsω + 1 but the replies received did

not satisfy the predicate. If (i) holds then it is clear

that ω is the last preceding write. If (ii) holds then by

Lemma 4, and since tsρ = tsω, it must be the case

that ρ is concurrent with ω′ and hence ω is again the

last preceding write. Lastly, if ρ discovered ts = 0 as

the maximum timestamp, then the predicate holds for

α = 1 and thus tsρ ≥ 0, returning in the worst case the

initial value.

6 A Linear Algorithm for the Predicate and

Complexity of ccFast

Table 1 presents the comparison of the complexities of

ccFast with the rest of the algorithms.

Communication Complexity. The communication

complexity of ccFast is identical to the communica-

tion complexity of Fast: both read and write opera-

tions terminate at the end of their first communication

round trip.

Computation Complexity. Computation is minimal

at the writer and server protocols. The most computa-

tionally intensive procedure is the computation of the

predicate during a read operation. To analyze the com-

putation complexity of ccFast we design and analyze

an algorithm to compute the predicate during any read

operation.

Algorithm 2 presents the formal specification of the

algorithm. Briefly, we assume that the input of the al-

Tractable low-delay atomic memory? 13

Algorithm 2 Linear Algorithm for Predicate Compu-

tation.
1: function isValidPredicate(srvAck,maxTS)
2: buckets← Array[1 . . . |R|+ 1], initially [0, . . . , 0]
3: for all s ∈ srvAck do
4: if s.ts = maxTS then
5: buckets[s.views]← buckets[s.views] + 1
6: end if
7: end for
8: for α← |R|+ 1 down to 2 do
9: if buckets[α] ≥ (|S| − αf) then
10: return(True)
11: else
12: buckets[α− 1]← buckets[α− 1] + buckets[α]
13: end if
14: end for
15: if buckets[1] = (|S| − f) then
16: return(True)
17: end if
18: return(False)
19: end function

gorithm is a set srvAck and a value maxTS which indi-

cate the servers that reply to a read operation and the

maximum timestamp discovered among the replies, re-

spectively. The algorithm uses a set of |R|+1 “buckets”

each of which is initialized to 0. Running through the set

of replies, srvAck, a bucket k is incremented whenever

a server replied with the maximum timestamp and re-

ports that this timestamp is seen by k processes (A2:L3-

7). At the end of the parsing of the srvAck set, each

bucket k holds how many servers reported the maxi-

mum timestamp and they sent this timestamp to k pro-

cesses. Once we accumulate this information we check

if the number of servers collected in a bucket k are more

than |S|− kf . If they are, the procedure terminates re-

turning True; else the number of servers in bucket k

is added to the number of servers of bucket k − 1 and

we repeat the check of the condition (A2:L8-14). At this

point the number kept at bucket k−1 indicates the total

number of servers that reported that their timestamp

was seen by more or equal to k−1 processes. This pro-

cedure continues until the above condition is satisfied

or we reach the smallest bucket. If none of the buckets

satisfies the condition the procedure returns False.

Theorem 4 Algorithm 2 implements the predicate

used in every read operation in algorithm ccFast.

Proof To show that Algorithm 2 correctly implements

the predicate used by the read operations in ccFast,

we need to show that it returns True whenever the pred-

icate holds and returns False otherwise. Recall that the

predicate is the following:

∃α ∈ [1, |R|+ 1] s.t.(6)

MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} ∧ |MS | ≥ |S| − αf(7)

According to our implementation we have a bucket

for each α. For each α the predicate demands that we

collect all the servers that replied withmaxTS and with

views ≥ α (set MS). Then we check if these servers are

more than |S|−αf . Let Si = {s : s ∈ srvAck ∧ s.ts =

maxTS ∧ s.views = i}, for 1 ≤ i ≤ |R| + 1, be the

set of servers who replied with views = i. Since each

server includes a single views number, notice that for

any i, j ∈ [1, |R|+ 1], Si ∩ Sj = ∅.
It is easy to see that initially each bucket k, for

1 ≤ k ≤ |R| + 1, holds the number of servers with

exactly k views, and hence bucket[k] = |Sk|. Notice

that the last bucket |R|+ 1 collects all the servers that

replied to all possible processes (including the writer).

Thus, no server may reply with views > |R| + 1. So,

if the predicate is valid for α = |R|+ 1, it follows that

MS = S|R|+1, and hence |S|R|+1| ≥ |S| − (|R| + 1)f .

Since bucket[|R|+ 1] = |S|R|+1|, then bucket[|R|+ 1] ≥
|S| − (|R|+ 1)f and the condition of Algorithm 2 also

holds. Thus, the algorithm returns TRUE in this case.

It remains to investigate any case where α < |R|+1.

Notice that the MS set in the predicate includes all

the servers that replied with views ≥ α. Thus, for any

α < |R|+ 1,

MS =
⋃

α≤i≤|R|+1

Si

Since no two sets Si and Sj intersect, then

|MS | =
∑

α≤i≤|R|+1

|Si|

When a bucket k < |R|+ 1 is investigated the value

of the bucket becomes

bucket[k] =
∑

k≤i≤|R|+1

bucket[i]

where bucket[i] = |Si|, the initial value of the bucket.

Thus, the above summation can be written as

bucket[k] =
∑

k≤i≤|R|+1

|Si|

Therefore, bucket[k] = |MS |, whenever k = α. Hence,

if |MS | ≥ |S| − αf in the predicate it must be the case

that bucket[α] ≥ |S| − αf in the algorithm. It follows

that if the predicate is valid the algorithm returns True.

Similarly, if the condition does not hold for the predi-

cate it does not hold for the algorithm either. If there is

no α to satisfy the predicate then there is no k to satisfy

the condition in the algorithm. Thus, the algorithm in

this case returns False, completing the proof.

Finally we can analyze the complexity of Algorithm

2 which in turn specifies the computational complex-

ity of the ccFast. Algorithm 2 traverses once the set

14 Antonio Fernández Anta et al.

srvAck and once the array of |R| + 1 buckets. Since,

srvAck contains at most |S| servers, and |R| is bounded

by |S|, then the complexity of the algorithm is:

Theorem 5 Algorithm 2 takes O(|S|) time.

This shows that we can compute the predicate of

algorithm ccFast in linear time with respect to the

number of servers in the system. This is a huge im-

provement over the time required by the Fast algo-

rithm, and matches the computational efficiency of the

two round ABD algorithm. This result demonstrates

that fastness does not necessarily has to sacrifice com-

putation efficiency.

7 Algorithm ccHybrid: Switching from One to

Two Rounds

As discussed in Section 3, algorithm ccFast guarantees

correctness only when the number of readers is bounded

with respect to the ratio of the number of servers and

the number of failures in the system, i.e. |R| < |S|
f −2. In

this section we propose a modification to ccFast that

removes the bound on the number of readers. To un-

bound the number of readers, the new algorithm ccHy-

brid, allows some read operations to complete in two

rounds. In particular, ccHybrid combines ideas from

ccFast and ABD: (i) it exploits timestamp-value pairs

to order the write operations, (ii) it uses the predicate

proposed by ccFast to determine the value returned

by a fast read, and (iii) it propagates the maximum

timestamp-value pair to a majority of servers during a

slow read.

The biggest challenge in ccHybrid is to deter-
mine when a second phase is necessary, and ensure that

such a strategy does not violate atomicity. The idea of

ccHybrid is to have the reader examine if the num-

ber of processes that observed the latest value is over

the bound |S|f −2. If not, then ccHybrid evaluates the

predicate proposed in ccFast over the replies, to de-

termine the value to return. Otherwise, it proceeds to

a propagation phase (second round) to send the latest

value to a majority of servers (given that he did not

already propagated that value). Notice that ccHybrid

performs equally to ccFast when the number of read-

ers that return the same value (not necessarily the same

readers for each value) satisfies the bound required by

ccFast. In any other case, a single complete, slow read

operation (similar to [11]) is necessary per write oper-

ation. In contrast to [11] however, ccHybrid does not

examine which nodes where recorded in common by the

servers (see Section 3), but rather examines how many

readers observed a value. This enables ccHybrid to

reduce computation time.

The code for the reader and server protocols is given

in Algorithm 3. Now we give additional details.

Counter variables rcounter, wcounter and Counter

are used to help processes identify “new” read and write

operations, and distinguish “fresh” from “stale” mes-

sages (since messages can be reordered). The values

and timestamp variables associated with the object, as

well as the set variables at the clients, and seen sets

at the servers, are used as in ccFast. The use of the

prop flag allows any read that succeeds a slow read,

and returns the same value, to be fast, as: (i) The slow

read propagates the maxTS to |S| − f servers, (ii) a

succeeding read receives replies from |S| − f servers,

and (iii) the read discovers prop = True for maxTS in

more than |S| − 2f > f + 1 servers. Below we provide

a brief description of the predicate and the protocol of

each participant of the service.

Writer Protocol. The write protocol remains the

same as in both ccFast and ABD (see Algorithm 1):

writer w increments its local timestamp and broad-

casts a writeRequest message to all the participating

servers S. Once the writer receives writeAck messages

from |S| − f servers, the operation completes.

Reader Protocol. The main departure of ccHybrid

from ccFast lies in the read protocol. A reader behaves

as in ccFast as long as the maximum number of views

reported by the servers remains below |S|
f − 2. More in

detail, when a read process r invokes a read operation it

sends readRequest messages to all the servers and waits

to collect messages from |S| − f servers (A3:L10-11).

When readAck messages are received from a majority

of servers, the reader discovers the maximum times-

tamp, maxTS, among the replies (A3:L12), the set of

messages maxAck that contained maxTS (A3:L13),

and the maximum views reported in those messages

(A3:L15). If the maximum views are less than |S|f − 2

and no reader propagated the maximum timestamp,

propSet = ∅, (A3:L17), then the reader evaluates the

predicate as in algorithm ccFast to decide which value

to return. Otherwise, the reader will return the value

v associated with the maxTS. However, before doing

so, the reader checks if at least f + 1 of the messages

that contain maxTS also contain prop = True. Mean-

ing that maxTS is already propagated to a majority of

servers. If this is the case, the reader returns fast the

value v associated with the maxTS without perform-

ing any further actions. If not, then the reader performs

a second phase propagating the maximum timestamp-

value pair to |S|−f servers before completion (A3:L18-

L23).

Server Protocol. The server protocol is the most in-

volved. In addition to the replica state (timestamp and

value), a server s maintains a set seen to record the

Tractable low-delay atomic memory? 15

Algorithm 3 Read and Server protocols of algorithm ccHybrid

1: at each reader r
2: Components:
3: ts ∈ N+,maxTS ∈ N+, v ∈ V, vp ∈ V, rcounter ∈ N+

4: propSet ⊆ S, srvAck ⊆ S×M, maxAck ⊆ S×M, maxV iews ∈
N+

5: Initialization:
6: ts← 0; maxTS ← 0; v ← ⊥; vp← ⊥, rcounter ← 0
7: propSet← ∅, srvAck ← ∅, maxAck ← ∅, maxV iews← 0
8: function Read()
9: rcounter ← rcounter + 1
10: send(〈readRequest, ts, v, vp, r, rcounter〉) to S
11: wait until (|srvAck| = |S| − f)
12: maxTS ← max({m.ts′|(s,m) ∈ srvAck})
13: maxAck ← {(s,m)|(s,m) ∈ srvAck ∧m.ts′ = maxTS}
14: 〈ts, v, vp〉 ← m.〈ts′, v′, vp′〉 for (∗,m) ∈ maxAck
15: maxV iews← max({m.views|(s,m) ∈ maxAck})
16: propSet← {s|(s,m) ∈ maxAck ∧m.prop = True}
17: if (maxV iews >

|S|
f − 2) ∨ (propSet 6= ∅) then

18: if (|propSet| < f + 1) then
19: rcounter ← rcounter + 1
20: srvAck ← ∅
21: send(〈writeRequest, ts, v, vp, r, rcounter〉) to S
22: wait until (|srvAck| = |S| − f)
23: end if
24: return(v)
25: else
26: if ∃α ∈ [1,

|S|
f − 2] s.t.

27: MS = {s : (s,m) ∈ maxAck ∧ m.views ≥ α} ∧
28: |MS| ≥ |S| − αf then
29: return(v)
30: else
31: return(vp)
32: end if
33: end if
34: end function

35: Upon receive m from s
36: if (m.counter = rcounter) then
37: srvAck ← srvAck ∪ {(s,m)}
38: end if

39: at each server si
40: Components:
41: ts ∈ N+, seen ⊆ R ∪ {w}, v ∈ V, vp ∈ V, prop ∈ {True, False}
42: Counter[1..|R|+ 2]: array of int
43: Initialization:
44: ts← 0, seen← ∅, v ← ⊥, vp← ⊥, prop← False
45: Counter[i]← 0 for i ∈ R ∪ {w}

46: Upon receive(〈writeRequest, ts′, v′, vp′, w, wcounter〉)
47: if (Counter[w] < wcounter) then
48: Counter[w]← wcounter
49: if (ts < ts′) then
50: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
51: seen← {w}
52: prop← False
53: else
54: seen← seen ∪ {w}
55: end if
56: end if
57: send(〈writeAck, Counter[w], s〉) to w

58: Upon receive(〈readRequest, ts′, v′, vp′, r, rcounter〉)
59: if (Counter[r] < rcounter) then
60: Counter[r]← rcounter
61: if (ts′ > ts) then
62: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
63: seen← {q}
64: prop← False
65: else
66: seen← seen ∪ {r}
67: end if
68: if (ts′ = ts) then
69: prop← True
70: end if
71: send(〈readAck, ts, v, vp, |seen|, prop, Counter[r]〉) to r
72: end if

processes that requested this replica, and a flag prop

that, as we explained earlier, its use is to optimize read

operations. Each server s ∈ S expects two types of mes-

sages.

(1) Upon receiving 〈readRequest, ts′, v′, vp′, r, rcounter〉
message from reader r server updates its local replica

state and seen set appropriately. Additionally, server

compares its local timestamp to the one enclosed in

the message and if the attached timestamp is greater

than its local timestamp, it also sets prop flag to False

(A3:L62-63). In case the timestamp of the message is

not greater than the local timestamp of s, then the

server records the sender in its seen set (A3:L66). The

server s sets prop = True when it receives a message

from a reader that contained a timestamp-value pair

equal to the one that is locally stored in s (A3:L69).

Notice that a reader propagates a timestamp-value pair

in every phase. So, s may set prop during the first or

second phase of a read. Lastly, reader acknowledges the

requesting reader with a readAck message (A3:L57).

(2) Upon receiving 〈writeRequest, ts′, v′, vp′, w, wcounter〉
message the server updates its local replica state and

seen set appropriately. In case the timestamp in the

request is greater than its local timestamp it also

sets prop flag to False (A3:L49-54). It then acknowl-

edges the requesting writer with a writeAck message

(A3:L57).

Algorithm Correctness

To prove correctness of algorithm ccHybrid we reason

about its liveness (termination) and atomicity (safety).

Liveness. Termination holds with respect to our failure

model: |S|−f servers do not fail and and each operation

waits for no more than |S|−f messages for completion.

We now give additional details regarding termination

of a read operation.

Read Operation. Each operation ρ sends readRequest
messages to all the servers in exchange e1 and waits for

|S| − f readAck messages from exchange e2. According

to our failure model |S| − f servers do not fail and

can receive the readRequest messages and reply back

with a readAck message to the requesting reader. In

16 Antonio Fernández Anta et al.

cases where the reader must perform a second round to

propagate the maximum timestamp-value pair before

termination, then ρ sends writeRequest messages to all

the servers in exchange e3 and waits for |S|−f writeAck
messages from exchange e4. Since at least |S|−f servers

receive the messages from r during exchanges e1 and e3

and at least |S| − f send an acknowledgment message

to r during exchanges e2 and e4, and r awaits for no

more than |S| − f messages, then termination of ρ is

always guaranteed.

Atomicity. To prove atomicity, we use the associa-

tion between the timestamps and the partial order as

given in Section 5. Due to the similarity of the writer

and server protocols to the ones used in ccFast, we

omit some of the proofs. We now state and prove the

following lemmas.

Monotonicity allows the ordering of the values ac-

cording to their associated timestamps. So Lemma 6

shows that the ts variable maintained by each server

process in the system is monotonically increasing. Let

us first make the following observation:

Lemma 6 In any execution ξ of ccHybrid, if a server

s receives a timestamp ts at time T from a process p,

then s replies with a timestamp ts′ ≥ ts at any time

T ′ > T .

Proof If the local timestamp of the server s, tss, is

smaller than ts, then tss = ts. Otherwise tss does not

change and remains tss ≥ ts. In any case s replies with

a timestamp tss ≥ ts to π. Since the timestamp of s

is monotonically incrementing, then s attaches a times-

tamp ts′ ≥ tss, and hence ts′ ≥ ts, to any subsequent

reply.

Next, we show that if a read operation succeeds a

write operation, then it returns a value at least as recent

as the one written.

Lemma 7 In any execution ξ of ccHybrid, if a read ρ

from r1 succeeds a write operation ω that writes times-

tamp ts from the writer w , i.e. ω → ρ, and returns a

timestamp ts′, then ts′ ≥ ts.

Using the next two lemmas, we show that if a read

operation ρ2 succeeds read operation ρ1, then ρ2 always

returns a value at least as recent as the one returned

by ρ1.

Lemma 8 In any execution ξ of ccHybrid, if ρ1 and

ρ2 are two read operations such that ρ1 → ρ2, ρ1 is

fast satisfying the predicate for maxTS = ts1, then ρ2
receives a maxTS = ts2 s.t. ts2 ≥ ts1.

Proof Since the predicate holds for ρ1, hence there ex-

ists an α ∈ [1, |S|f − 2], and MS1 ⊆ S s.t. |MS1| =

|S| − αf , and ∀s ∈ MS1, s.ts = ts1 and s.views ≥ α.

Performing the substitutions follows that:

|MS1| ≥ |S| − (
|S|
f
− 2)f ⇒ |MS1| > f

Since ρ2 receives replies from |S2| = |S|−f servers, then

there exists a server s ∈MS1∩S2 that replies to both ρ1
and ρ2. Since ρ1 → ρ2 then s replies to ρ1 before reply-

ing to ρ2. Since s replies with ts1 to ρ1, then according

to Lemma 6, it replies with a timestamp tss ≥ ts1 to

ρ2. Thus, ρ2 observes a timestamp maxTS ≥ ts1 and

hence ts2 ≥ ts1.

Lemma 9 In any execution ξ of ccHybrid, if ρ1 and

ρ2 are two read operations such that ρ1 → ρ2, and ρ1
returns ts1, then ρ2 returns ts2 ≥ ts1.

Proof A read operation has two modes: fast and slow.

Thus, we need to examine all the possible combinations

of the speeds of ρ1 and ρ2. There are four cases to in-

vestigate: (a) ρ1 is fast, and ρ2 is fast, (b) ρ1 is fast,

and ρ2 is slow, (c) ρ1 is slow, and ρ2 is slow, and (d)

ρ1 is slow, and ρ2 is fast. Let maxTSi be the maximum

timestamp observed by a read ρi, for i ∈ {1, 2}, during

its first phase.

Case (a): In case both operations are fast then, accord-

ing to ccHybrid, either they observe maxV iews ≤
|S|
f −2 and propSet = ∅, or they observe an |propSet| ≥
f+1. If both observe maxV iews ≤ |S|f −2 and check the

predicate, then with the same reasoning as in Lemma 5,

it follows that ts2 ≥ ts1.

If ρ1 observes |propSet| ≥ f + 1 then since ρ2 re-

ceives replies from |S2| = |S| − f servers, then there
exists a server s ∈ propSet ∩ S2 such that s replies

to both ρ1 and ρ2. Since ρ1 → ρ2, then s replies to

ρ1 before replying to ρ2. Since s replies with maxTS1

to ρ1, then by Lemma 6, s replies with a timestamp

tss ≥ maxTS1 to ρ2. So maxTS2 ≥ tss and hence

maxTS2 ≥ maxTS1. If maxTS2 = maxTS1 then s

will reply with tss = maxTS1 and prop = True.

In this case ρ2 will return ts2 = maxTS1 = ts1. If

maxTS2 > maxTS1 then ρ2 returns either maxTS2 or

maxTS2 − 1 and thus ts2 ≥ ts1.

It remains to examine the case where ρ1 observes

maxV iews ≤ |S|
f − 2 and propSet = ∅, and ρ2 ob-

serves |propSet| ≥ f + 1. If the predicate holds for ρ1
then by Lemma 8, ρ2 observes maxTS2 ≥ maxTS1.

Since ρ2 observes |propSet| ≥ f + 1 then it returns

ts2 = maxTS2, and thus ts2 ≥ ts1. If the predicate

does not hold for ρ1 then we know that the write oper-

ation propagating maxTS1−1 completed before or dur-

ing ρ1. Since ρ1 → ρ2 then this write completed before

ρ2 as well. Thus, by Lemma 7, ρ2 observes maxTS2 ≥

Tractable low-delay atomic memory? 17

maxTS1− 1. Since ρ2 observes |propSet| ≥ f + 1, then

it returns ts2 = maxTS2 ⇒ ts2 ≥ maxTS1−1⇒ ts2 ≥
ts1.

Case (b): Since ρ1 in this case is fast then ρ1 returns

either: (i) maxTS1 − 1, or (ii) maxTS1.

In (i), since ρ1 observed maxTS1 and since we

have a single writer, it follows that the write opera-

tion that wrote timestamp maxTS1 − 1, say ω1, pro-

ceeds or is concurrent to ρ1, and completes before the

response step of ρ1. Since ρ1 → ρ2, then ω1 → ρ2.

Since ρ2 is slow, then it returns the maximum times-

tamp it observes, i.e. ts2 = maxTS2. Moreover, since

ω1 → ρ2, and since both operations wait for |S| − f

replies, then according to our failure model, there exist

at least a single server s that replies to both opera-

tions, first to ω1 and then to ρ2. According to Lemma

6, s sends a timestamp tss ≥ maxTS1 − 1 to ρ2. Thus,

maxTS2 ≥ maxTS1 − 1, and therefore ts2 ≥ ts1.

In (ii) it follows that either the predicate holds

for ρ1, or ρ1 observes |propSet| ≥ f + 1. Since ρ2 is

slow and returns ts2 = maxTS2, then by Lemma 8

and with similar reasoning as in Case (a) for when

ρ1 observes |propSet| ≥ f + 1, we can show that

maxTS2 ≥ maxTS1 and hence ts2 ≥ ts1.

Case (c): The case where both reads are slow is sim-

ple and resembles the behavior of the reads in ABD [2].

Here each read ρi, for i ∈ [1, 2], returns maxTSi and be-

fore completing it propagates maxTSi to |S|−f servers.

Thus, ρ1 returns ts1 = maxTS1, and before complet-

ing propagates maxTS1 to |P1| = |S|− f servers. Since

ρ1 → ρ2, and since ρ2 receives |S2| = |S| − f replies,

then it is going to receive a timestamp tss ≥ maxTS1

from at least a single server s ∈ P1 ∩ S2. Thus, ρ2 re-

turns ts2 = maxTS2 ≥ maxTS1, and ts2 ≥ ts1.

Case (d): So it remains to investigate the case where

ρ1 is slow and ρ2 is fast. Observe that this case is possi-

ble when a server s is “saturated” by concurrent reads

(more than |S|
f − 2) and s replies to ρ1 but does not

reply to ρ2. Now we have two cases to investigate: ei-

ther ρ2 observes maxTS2 ≥ maxTS1, or maxTS2 =

maxTS1 − 1. If ρ2 observes a maxTS2 ≥ maxTS1, it

may either return ts2 = maxTS2 or ts2 = maxTS2−1.

In either case ts2 ≥ maxTS1 − 1⇒ ts2 ≥ ts1.

Let us examine now the case where maxTS2 =

maxTS1− 1. Since ρ1 is slow and returns maxTS1− 1,

then before completing it propagates maxTS1 − 1 to

|S| − f servers. Let P1 be the set of servers that re-

ceived the messages and replied to the second phase

of ρ1. Moreover, |S2| = |S| − f are the servers that

received messages and replied to ρ2. So by Lemma

6, every server s ∈ P1 ∩ S2 replies to both ρ1 and

then to ρ2, with a timestamp tss ≥ maxTS1 − 1. In

addition s sets prop = True before replying to ρ1.

Since maxTS2 = maxTS1 − 1, then s replies with

tss = maxTS1−1 to ρ2, and thus the propSet contains

at least s in ρ2. According to the algorithm ρ2 returns

ts2 = maxTS2 in this case and hence ts2 ≥ ts1.

Theorem 6 Algorithm ccHybrid implements a

SWMR atomic read/write register.

Proof We now use the lemmas stated above and the

operations order definition to reason about each of the

three atomicity conditions P1, P2 and P3 as given in

Section 2 following [16].

P1. For any π1, π2 ∈ Π such that π1 → π2, it

cannot be that π2 ≺ π1.

When the two operations are reads and π1 → π2 holds,

then from Lemma 9 it follows that the timestamp of π2
is no less than the one of π1, i.e. ts2 ≥ ts1. If ts2 > ts1,

then by the ordering definition π1 ≺ π2 is satisfied.

When ts2 = ts1 then the ordering is not defined, thus it

cannot be the case that π2 ≺ π1. If π2 is a write, the sole

writer generates a new timestamp by incrementing the

largest timestamp in the system. By well-formedness,

any timestamp generated in any write operation that

precedes π2 must be smaller than ts2 . Since π1 → π2,

then it holds that ts1 < ts2. Hence, by the ordering

definition it cannot be the case that π2 ≺ π1. Lastly,

when π2 is a read and π1 a write, then by Lemma 7

it follows that ts2 ≥ ts1. By the ordering definition, it

cannot hold that π2 ≺ π1 in this case either.

P2. For any write ω ∈ Π and any operation π ∈ Π,

then either ω ≺ π or π ≺ ω.

If the timestamp returned from ω is greater than the

one returned from π, i.e. tsω > tsπ, then π ≺ ω fol-

lows directly. Similarly, if tsω < tsπ holds, then ω ≺ π

follows. If tsω = tsπ, then it must be that π is a read

and either (i) discovered tsω from a propagation set,

propSet, written by ω, or (ii) discovered tsω from a set

of servers and the predicate is satisfied, or (iii) π dis-

covered tsω + 1 but the predicate is not satisfied. Thus,

ω ≺ π follows.

P3. Every read operation returns the value of the

last write preceding it according to ≺ (or the initial

value if there is no such write).

Let ω be the last write preceding read ρ. From our defi-

nition it follows that tsρ ≥ tsω. If tsρ = tsω, then ρ ei-

ther: (i) discovered tsω from a propagation set, propSet,

written by ω, or (ii) discovered tsω from a set of servers

and the predicate is satisfied, or (iii) π discovered tsω+1

but the predicate is not satisfied. If case (i) holds then,

it is clear that ω is the last preceding write since ρ dis-

covered tsω as the maximum timestamp maxTS and

18 Antonio Fernández Anta et al.

either (a) it was propagated to a set of servers and ρ

returns tsω without any further actions or (b) ρ prop-

agates tsω to a set of servers before completion. When

case (ii) holds, then it is clear that ω is the last pre-

ceding write. If (iii) holds then by Lemma 7, and since

tsρ = tsω, it must be the case that ρ is concurrent

with ω′ and hence ω is again the last preceding write.

If tsρ > tsω, then it means that ρ obtained a larger

timestamp. However, the larger timestamp can only be

originating from a write that succeeds ω, thus ω is not

the preceding write and this cannot be the case. Lastly,

if tsρ = 0 as the maximum timestamp, then the predi-

cate holds for α = 1 and thus tsρ ≥ 0, returning in the

worst case the initial value.

Having shown liveness and atomicity of algorithm

ccHybrid the result follows.

8 Algorithm OhFast: Switching from One to

One and a Half Rounds

Similar to algorithm ccHybrid, OhFast aims to allow

unbounded number of readers to participate in the ser-

vice while allowing operations to complete in one round.

In contrast to the classic approach of the two rounds

per read operation, OhFast tries to further reduce the

communication required by slow reads. Thus OhFast

combines ideas from ccFast and the one and a half

round approach suggested by OhSam. With server to

server communication, OhFast is expected to perform

better in environments where the servers communicate

via high capacity links, e.g., data centers.

Like in OhSam, servers assume the responsibility

of propagating the value of the timestamp instead of

the reader. Similarly, in OhFast we move the decision

on a slow read to the servers. In particular, the servers

record the processes that requested their timestamp. If

the recording set becomes “large” then a server relays a

read to the other servers before replying to the reader.

However, there is a major departure from OhSam: the

servers that receive relay messages do not broadcast

relays to all the servers but just to the servers that

send them a relay. So, only a single server may relay

for a read operation keeping the message complexity of

the algorithm low in cases of low contention. When a

server that relays a timestamp gets appropriate relays

from the other servers, it marks the timestamp as se-

cured, and sends a reply to the reader. When now the

reader receives the replies from |S|−f servers it collects

the messages with the highest timestamp. If there is a

server that declares this timestamp as secured then the

read immediately returns the value associated with this

timestamp; otherwise the reader evaluates the predicate

of ccFast on the replies to determine the value to re-

turn.

Algorithm 4 provides the formal pseudocode of

OhFast. We omit the receipt of a writeRequest mes-

sage on the server side as it is the same to the one

presented for ccFast (see Algorithm 1). We now give

additional details.

Again here the variables are used as in algo-

rithms ccFast and ccHybrid. Additionally, each

server maintains a Relays array where it stores the

latest timestamp it relayed for each reader. Below we

provide a brief description of the protocol of each par-

ticipant of the service.

Writer Protocol. The write protocol is very similar

as in both ccFast and ccHybrid (see Algorithm 1):

writer w increments its local timestamp and broad-

casts a writeRequest message to all the participating

servers S. Once the writer receives writeAck messages

from |S| − f servers, the operation completes.

Reader Protocol. The read protocol in OhFast is

simpler than the read of ccHybrid. When a read pro-

cess r invokes a read operation it sends readRequest
messages to all the servers and waits to collect messages

from |S| − f servers (A4:L11-12). Once those replies

are received the reader discovers the maximum times-

tamp maxTS among the replies (A4:L13) 1, and col-

lects all the messages that contain maxTS in the set

maxAck (A4:L14). If some message in maxAck indi-

cates that maxTS is secured, i.e., the value v associ-

ated with maxTS was sufficiently propagated, then the

reader returns v associated with maxTS (A4:L17-18).

Otherwise, the reader evaluates the predicate, that cc-

Fast [5] uses, on the messages that belong in maxAck

to decide on which value to return. If the predicate is

holds, then the reader returns the value v associated

with maxTS, otherwise the value vp associated with

maxTS − 1 (A4:L21-25).

Server Protocol. The server protocol is the most in-

volved. The server’s state is composed of the state of the

replica, the recording set seen, a flag securedts which

indicates whether a timestamp has been relayed to a

majority of servers, and a Relays array storing the lat-

est timestamp the server relayed for each reader. Each

server expects three types of messages.

(1) Upon receiving 〈readRequest, ts′, v′, vp′, r, rcounter〉
message from reader r, server sj updates its local replica

state and seen set appropriately. Additionally, server

compares its local timestamp to the one enclosed in the

message and if the attached timestamp is greater than

its local timestamp, it also sets securedts flag to False

(A4:L63-64). If not, then the server adds the sender to

1 Notice that, this is another departure from OhSam as each
reader in OhSam returns the smallest discovered timestamp.

Tractable low-delay atomic memory? 19

Algorithm 4 Reader and Server protocols of algorithm OhFast

1: At each reader r
2: Components:
3: ts ∈ N+,maxTS ∈ N+, v, vp ∈ V, rcounter ∈ N+

4: srvAck ⊆ S ×M, maxAck ⊆ S ×M, maxV iews ∈ N+

5: Initialization:
6: ts ← 0,maxTS ← 0, v ← ⊥, vp ← ⊥, rcounter ←

0,maxV iews← 0
7: function Read()
8: rcounter ← rcounter + 1
9: srvAck ← ∅
10: maxAck ← ∅
11: send(〈readRequest, ts, v, vp, ri, rcounter〉) to S
12: wait until (|srvAck| = |S| − f)
13: maxTS ← max{m.ts′|(s,m) ∈ srvAck}
14: maxAck ← {(s,m)|(s,m) ∈ srvAck ∧m.ts′ = maxTS}
15: 〈ts, v, vp〉 ← m.〈ts′, v′, vp′〉 for (∗,m) ∈ maxAck
16: maxV iews← max{m.seen|(s,m) ∈ maxAck}
17: if ∃(s,m) ∈ maxAck s.t. m.secured = True then
18: return(v)
19: end if
20: if ∃α ∈ [1,

|S|
f − 2] s.t. MS = {s : (s,m) ∈

maxAck ∧ m.seen ≥ α}
21: ∧ |MS| ≥ |S| − αf then
22: return(v)
23: else
24: return(vp)
25: end if
26: end function

27: Upon receive m from s
28: if (m.rcounter = rcounter) then
29: srvAck ← srvAck ∪ {(s,m)}
30: end if

31: At writer w
32: Components:
33: ts ∈ N+, v, vp ∈ V,wcounter ∈ N+

34: Initialization:
35: ts← 0, v ← ⊥, vp← ⊥, wcounter ← 0
36: function Write(val : input)
37: vp← v
38: v ← val
39: ts← ts+ 1
40: wcounter ← wcounter + 1
41: wAck ← ∅
42: broadcast(〈writeRequest, ts, v, vp, w,wcounter〉) to S
43: wait until (|wAck| = |S| − f)
44: return
45: end function

46: Upon receive m from s
47: if (m.wcounter = wcounter) then
48: wAck ← wAck ∪ {(s,m)}
49: end if

50: at each server sj
51: Components:
52: ts ∈ N+, v ∈ V, vp ∈ V, scounter ∈ N+, securedts ∈
{True, False}

53: seen ⊆ R ∪ {w}, srvRelay ⊆ S
54: Relays[1..|R|+ 1]: array of int, Counter[1..|R|+ 2]: array of int
55: Initialization:
56: ts← 0, v ← ⊥, vp← ⊥, scounter ← 0, securedts← False
57: seen← ∅, srvRelay ← ∅
58: Counter[i]← 0 for i ∈ R ∪ {w}, Relays[i]← 0 for i ∈ R

59: Upon receive(〈readRequest, ts′, v′, vp′, r, rcounter〉)
60: if (Counter[r] < rcounter) then
61: Counter[r]← rcounter
62: if (ts < ts′) then
63: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
64: seen← {r}, securedts← False
65: else
66: seen← seen ∪ {r}
67: end if
68: if (|seen| > |S|

f − 2) ∧ (securedts = False) ∧ (Relays[r] <

ts) then
69: scounter ← scounter + 1
70: Relays[r]← ts
71: srvRelay ← ∅
72: send(〈readRelay, ts, v, vp〉, r, sj , rcounter, scounter) to S
73: else
74: send(〈readAck, ts, v, vp〉, |seen|, rcounter, securedts) to r

75: end if
76: end if

77: Upon receive(〈readRelay, ts′, v′, vp′, r, s, c1, c2〉)
78: if (Counter[s] < c2) then
79: Counter[s]← c2
80: if (ts′ > ts) then
81: 〈ts, v, vp〉 ← 〈ts′, v′, vp′〉
82: seen← {r}
83: else if (ts = ts′) then
84: seen← seen ∪ {r}
85: end if
86: if (Relays[r] = ts′) then
87: srvRelay ← srvRelay ∪ {s}
88: if (|srvRelay| = |S| − f) then
89: if (ts = ts′) then
90: securedts← True
91: end if
92: send(〈readAck, ts′, v′, vp′, 0, c1, securedts〉) to r
93: end if
94: else
95: scounter ← scounter + 1
96: send(〈readRelay, ts′, v′, vp′〉, r, sj , c1, scounter) to s
97: end if
98: end if

the seen set (A4:L66). Next, sj must decide whether to

relay the received timestamp or not. In particular, sj
relays a timestamp to all the servers (A4:L72) if : (i) it

sent this timestamp to more than |S|
f − 2 reader pro-

cesses, (ii) the timestamp has not already being relayed

(i.e., securedts = False) and (iii) the server has not

yet relayed this timestamp for the same reader A4:L68).

Otherwise, if any of these conditions does not hold then

sj just replies to the sender with its local timestamp

(A4:L74). In a readRelay message sj includes its local

replica state, the id of the reader that initiated the re-

lay, and its own id.

(2) Upon receiving a 〈readRelay, ts′, v′, vp′, r, s, c1, c2〉
message from server s, a server sj first checks if the at-

tached timestamp is strictly greater than its local one.

If that holds, then sj updates its local timestamp and

value to the ones collected and resets the seen set to

include only the requesting reader r. Otherwise, sj adds

the requesting reader in the seen set without resetting it

(A4:L80-84). Then sj checks if it also sent a relay with

the same timestamp for the same reader (A4:L86). If

this holds, server sj adds sender s in the servers that

received its relay (A4:L87). When the server receives

|S| − f relays, then it sends a readAck message to the

reader that initiated the relay along with the timestamp

that it initially relayed (not its local timestamp). Lastly,

if its local timestamp is the same as the relayed times-

tamp, then sj also sets securedts = True (A4:L88-

20 Antonio Fernández Anta et al.

92). If the server did not sent a relay with the same

timestamp for the same reader, then the server sends

the readRelay message back to sender s and completes

(A4:L96).

(3) Upon receiving 〈writeRequest, ts′, v′, vp′, w, wcounter〉
message the server updates its local replica state and

seen set appropriately. In case the timestamp in the

request is greater than its local timestamp it also

sets securedts flag to False. It then acknowledges the

requesting writer with a writeAck message.

Algorithm Correctness

To prove correctness of algorithm OhFast we reason

about its liveness (termination) and atomicity (safety).

Liveness. Termination holds with respect to our failure

model: |S|−f servers do not fail and and each operation

waits for no more than |S|−f messages for completion.

We now give additional details.

Write Operation. Per algorithm OhFast, writer w cre-

ates a writeRequest message and then it broadcasts it

to all servers in exchange e1 (A4:L42). Writer w then

waits for writeAck messages from |S| − f servers from

e2 (A4:L43). According to our failure model |S| − f

servers do not fail and can receive writeRequest and send

writeAck messages to the requesting writer, thus a write

operation ω terminates.

Read Operation. Each operation ρ sends readRequest
messages to all the servers (A4:L11) and waits for |S|−f
replies before terminating (A4:L12). Thus termination

of such process is prevented if less than |S| − f servers

reply to r for operation ρ. When a server receives a

readRequest for a read operation it may perform one of

two actions: (i) replies to the requesting reader with a

readAck message that includes its local timestamp-value

pair, or (ii) sends readRelay messages to other servers

and replies to the reader with a readAck message when

it collects |S|−f relays that contain its local-timestamp.

Thus, a read operation terminates if a correct server is

guaranteed to send a readAck message to the reader

in both cases. Notice that when a server s′ receives a

readRelay message from s with a timestamp ts it either,

(a) sends a readRelay to s (A4:L92), or (b) appends its

local srvRelay set with the sender if Relays[r] = ts

(A4:L87). In (a) it is clear that s′ replies to s with a

readRelay that contains ts. However it is not clear if s′

sends a readRelay message to s in (b). Notice that (b)

is only possible if Relays[r] = ts, where ts the times-

tamp enclosed in the readRelay message. Server s′ sets

Relays[r] = ts only when it sends readRelay messages

for r for timestamp ts to all the servers (A4:L72). So in

that line s′ sends readRelay message to s as well. There-

fore, in any case (a) or (b), a readRelay message is sent

by s′ to s with timestamp ts. So s eventually receives

|S|−f readRelay messages that contain ts and thus the

check in A4:L88 is satisfied and replies with a readAck
message to the read operation. Thus, the reader collects

a readAck message from a server in both cases (i) and

(ii). Hence, the reader receives at least |S| − f readAck
messages and the read operation ρ terminates.

Atomicity. Next it remains to show that atomicity is

preserved. We use the association between the times-

tamps and the partial order as given in Section 5.

It is easy to see from the algorithm, that every pro-

cess updates its local replica only when a value with a

higher timestamp is received. Notice also that when a

server receives a timestamp ts then it attaches a times-

tamp tss ≥ ts to any message it sends from that point

onward. This can be shown with similar statements as

in Lemma 2. We need to show that when a server re-

ceives a relay that contains a timestamp ts then it sends

a timestamp tss ≥ ts from that point onward.

Lemma 10 In any execution ξ of OhFast, if a server

s receives a relay with a timestamp ts at time T from a

server s′, then s attaches a timestamp ts′ ≥ ts to any

message it sends at any time T ′ > T .

Now we can show that if a read operation succeeds

a write operation, then it returns a value at least as

recent as the one written.

Lemma 11 In any execution ξ of OhFast, if a read ρ

from r succeeds a write operation ω that writes times-

tamp tsω from the writer w, i.e. ω → ρ, and returns a

timestamp tsρ, then tsρ ≥ tsω.

Next, we prove a lemma showing that if a timestamp

ts is secured from a server s, then at least |S|−f servers

have a timestamp ts′ > ts.

Lemma 12 In any execution ξ of OhFast, if a server

s sets securedts = True for a timestamp ts at time T

then ∃S ′ ⊆ S at T , s.t. |S ′| ≥ |S| − f and ∀s′ ∈ S ′, the

local timestamp of s′ is ts′ ≥ ts.

Proof This lemma follows from the way that a relay

round is implemented by a server. In particular, when

a server s relays a timestamp ts, it sends a readRelay
message to all the servers. Each server srvr′ that re-

ceives such a relay replies with a timestamp ts′ = ts.

Before replying, s′ either sets its timestamp to ts or has

a larger timestamp. So when s sets securedts = True

has received a set |S ′| ≥ |S| − f of replies, and every

server s′ ∈ S ′ has a timestamp ts′ ≥ ts, by Lemma 10.

Thus the lemma follows.

Tractable low-delay atomic memory? 21

Next, we show that if a read operation ρ2 succeeds

read operation ρ1, then ρ2 always returns a value at

least as recent as the one returned by ρ1.

Lemma 13 In any execution ξ of OhFast, if ρ1 and

ρ2 are two read operations such that ρ1 → ρ2, and ρ1
returns tsρ1 , then ρ2 returns tsρ2 ≥ tsρ1 .

Proof A read operation may decide on the value to re-

turn in two ways in OhFast: (i) it receives a secured

timestamp, or (ii) it evaluates the predicate. Let us first

examine what happens when the two reads are invoked

by the same reader (i.e. r1 = r2). During ρ2, r1 includes

a timestamp tsr1 ≥ tsρ1 in every message it sends to

servers. According to Lemma 2 every server s replies

with a timestamp tss ≥ tsρ1 . Thus, maxTS2 ≥ tsρ1 .

If maxTS2 > tsρ1 then since tsρ2 = maxTS2 or

tsρ2 = maxTS2 − 1 it follows that tsρ2 ≥ tsρ1 in ei-

ther case. If maxTS2 = tsρ1 then every server adds r1
in their seen set before replying to ρ2. So the predicate

is valid for |MS| ≥ |S|−f and α = 1. Hence, ρ2 returns

tsρ2 = maxTS2 = tsρ1 in any case (i) or (ii).

So we need now to examine all the possible com-

binations for the two reads ρ1 and ρ2 when r1 6= r2.

If both read operations examine the predicate to de-

cide on the value to return (i.e., they do not receive

a secured timestamp), then with same reasoning as in

[5, Lemma 8] we can show that atomicity is preserved.

So it remains to examine the following three cases: (1)

ρ1 evaluates the predicate, and ρ2 receives a secured

maxTS2, (2) ρ1 receives a secured maxTS1, and ρ2
evaluates the predicate, and (3) ρ1 receives a secured

maxTS1, and ρ2 receives a secured maxTS2.

Case 1: In this case, ρ1 evaluates the predicate, and

ρ2 returns tsρ2 = maxTS2 as it received a reply with

maxTS2 and secured = True. There are two subcases

to examine: (a) ρ1 returns maxTS1, and (b) ρ1 returns

maxTS1 − 1.

Case 1a: If ρ1 returns maxTS1 it follows that the

predicate is valid for ρ1. Hence:

∃α ∈ [1,
|S|
f
− 2] and MS ⊆ S s.t. (8)

MS = {s : s.ts = maxTS1 ∧ s.views ≥ α} ∧ |MS| ≥ |S| − αf (9)

Moreover, since ρ1 examines the predicate, then
none of the servers that replied with maxTS1 sends
secured = True. Therefore, ∀s ∈ MS, it must be true
that s.views ≤ Sf − 2 before replying to ρ1 (L66), oth-

erwise s would proceed to relay and secure maxTS1.
Since every s.views ≤ Sf − 2, then it must be the case

that α ≤ Sf − 2 as well. Thus substituting:

|MS| ≥ |S| − αf ⇒ |MS| ≥ |S| − (
S
f
− 2)f ⇒ |MS| > f

Since ρ2 receives replies from |S2| = |S| − f servers

then S2 ∩ MS 6= ∅. Also notice that since ρ1 → ρ2,

then a server s ∈ S2 ∩MS replies to ρ1 with maxTS1

before replying to ρ2. By Lemma 2, s replies to ρ2 with

a timestamp tss ≥ maxTS1. Thus, maxTS2 ≥ tss ⇒
maxTS2 ≥ maxTS1 and ρ2 returns tsρ2 ≥ maxTS1 ⇒
tsρ2 ≥ tsρ1 .

Case 1b: Assume now the case where ρ1 returns

maxTS1 − 1. Since ρ1 received maxTS1, and since the

sole writer invokes one operation at a time, then it fol-

lows that the write operation that wrote maxTS1 − 1,

say ω, completed during or before ρ1. Since though

ρ1 → ρ2, then it follows that ω → ρ2. Since ω com-

municates with |S| − f servers before completing, and

since ρ2 waits for |S| − f replies, then there is a server

s that replies to ω before replying to ρ2. By Lemma 2,

s replies with a timestamp tss ≥ maxTS1 − 1 to ρ2.

Thus ρ2 observes a maxTS2 ≥ maxTS1− 1, and hence

tsρ2 ≥ maxTS1 − 1⇒ tsρ2 ≥ tsρ1 in this case as well.

Case 2: Here, ρ1 returns tsρ1 = maxTS1 as it received

a message that contained maxTS1 and secured =

True. Read ρ2 evaluates the predicate to decide on the

value to return. We have two subcases to examine again:

(a) ρ2 returns maxTS2, or (b) ρ2 returns maxTS2− 1.

Since ρ1 returned a secured timestamp, then it received

maxTS1 and secured = True from some server s. By

Lemma 12, a set |S ′| ≥ |S| − f of servers have a times-

tamp ts′ ≥ maxTS1 before s replies to ρ1. Since ρ2 re-

ceives replies from |S2| = |S|−f servers, then S ′∩S2 6=
∅. Then by Lemmas 2 and 10, any server in s′ ∈ S ′∩S2
replies to ρ2 with a timestamp tss′ ≥ maxTS1. Thus, ρ2
observes a maxTS2 ≥ maxTS1. If maxTS2 > maxTS1

and since ρ2 returns either maxTS2 or maxTS2 − 1,

then in either case tsρ2 ≥ tsρ1 .

So it remains to examine what happens when

maxTS2 = maxTS1. If ρ2 returns tsρ2 = maxTS2

then tsρ2 ≥ tsρ1 . Let us examine now if ρ2 may return

maxTS2−1. As we said before every server s′ in S ′∩S2
replies with tss′ ≥ maxTS1 to ρ2. Since |S ′| ≥ |S| − f
and |S2| ≥ |S| − f then |S ′ ∩ S2| ≥ |S| − 2f . Also by

the algorithm, every server in S ′ adds r1 in its seen

set before replying to the relay message from s (L88).

Furthermore, every server in S2 adds r2 in its seen set

before replying to ρ2. So every server s′ ∈ S ′∩S2 replies

with a s.views ≥ 2. Thus, the predicate holds for at

least |MS| = |S ′ ∩ S2| ≥ |S| − 2f and α = 2. Hence ρ2
will return maxTS2 contradicting our assumption that

returns maxTS2 − 1. So returning maxTS2 − 1 is not

possible.

Case 3: In this case both ρ1 and ρ2 return a secured

timestamp. Let s1 be the server that send maxTS1 and

22 Antonio Fernández Anta et al.

secured = True to ρ1, and s2 (not necessarily different

than s1) be the server that sent maxTS2 and secured =

True to ρ2. By Lemma 12, there exists a set S ′ s.t. every

server s ∈ S ′ has a timestamp tss ≥ maxTS1 before

s1 replies to ρ1. As explained in Case 2, S ′ ∩ S2 6= ∅.
Hence there exists a server that replied both to the relay

message of s1 and to ρ2. By Lemma 10, each server s′ ∈
S ′ ∩ S2 replies to ρ2 with a timestamp tss′ ≥ maxTS1.

Hence, maxTS2 ≥ maxTS1. Since ρ2 returns a secured

timestamp, then it returns maxTS2. Therefore, tsρ2 =

maxTS2 ⇒ tsρ2 ≥ maxTS1 ⇒ tsρ2 ≥ tsρ1 .

Theorem 7 Algorithm OhFast implements a SWMR

atomic read/write register.

Proof We now use the lemmas stated above and the

operations order definition to reason about each of the

three atomicity conditions P1, P2 and P3 as given in

Section 2 following [16].

P1. For any π1, π2 ∈ Π such that π1 → π2, it

cannot be that π2 ≺ π1.

When the two operations are reads and π1 → π2 holds,

then from Lemma 13 it follows that the timestamp of π2
is no less than the one of π1, i.e. ts2 ≥ ts1. If ts2 > ts1,

then by the ordering definition π1 ≺ π2 is satisfied.

When ts2 = ts1 then the ordering is not defined, thus it

cannot be the case that π2 ≺ π1. If π2 is a write, the sole

writer generates a new timestamp by incrementing the

largest timestamp in the system. By well-formedness,

any timestamp generated in any write operation that

precedes π2 must be smaller than ts2 . Since π1 → π2,

then it holds that ts1 < ts2. Hence, by the ordering

definition it cannot be the case that π2 ≺ π1. Lastly,

when π2 is a read and π1 a write, then by Lemma 11

it follows that ts2 ≥ ts1. By the ordering definition, it

cannot hold that π2 ≺ π1 in this case either.

P2. For any write ω ∈ Π and any operation π ∈ Π,

then either ω ≺ π or π ≺ ω.

If the timestamp returned from ω is greater than the

one returned from π, i.e. tsω > tsπ, then π ≺ ω follows

directly. Similartly, if tsω < tsπ holds, then ω ≺ π

follows. If tsω = tsπ, then it must be that π is a read

and either (i) ρ discovered tsω from a set of messages

that contained tsω as the maximum timestamp, i.e.,

tsω = maxTS, and it was propagated to a set of servers

(maxTS = tsω = secured), or (ii) discovered tsω from

a set of servers and the predicate is satisfied, or (iii)

π discovered tsω + 1 but the predicate is not satisfied.

Thus, ω ≺ π follows.

P3. Every read operation returns the value of the

last write preceding it according to ≺ (or the initial

value if there is no such write).

Let ω be the last write preceding read ρ. From our def-

inition it follows that tsρ ≥ tsω. If tsρ = tsω, then

ρ either: (i) ρ discovered tsω from a set of messages

that contained tsω as the maximum timestamp, i.e.,

tsω = maxTS, and it was propagated to a set of servers

(maxTS = tsω = secured), or (ii) discovered tsω as

the maximum timestamp from some servers and their

replies satisfied the predicate, or (iii) discovered the

value written by some write ω′ with timestamp tsω + 1

but the replies received did not satisfy the predicate. If

case (i) holds, ω is the last preceding write since ρ dis-

covered tsω as the maximum timestamp, tsω = maxTS

and it was propagated to a set of servers and ρ returns

tsω without any further actions. When case (ii) holds,

then it is clear that ω is the last preceding write. If

(iii) holds then by Lemma 11, and since tsρ = tsω,

it must be the case that ρ is concurrent with ω′ and

hence ω is again the last preceding write. If tsρ > tsω,

then it means that ρ obtained a larger timestamp. How-

ever, the larger timestamp can only be originating from

a write that succeeds ω, thus ω is not the preceding

write and this cannot be the case. Lastly, if tsρ = 0 as

the maximum timestamp, then the predicate holds for

α = 1 and thus tsρ ≥ 0, returning in the worst case the

initial value.

Having shown liveness and atomicity of algorithm

OhFast the result follows.

9 Empirical Results

In this section, we present empirical results that we ob-

tained by implementing algorithms ABD [2], OhSam

[12], Sf [11], ccHybrid, and OhFast that allow un-

bounded participation, using the NS3 discrete event

simulator [1]. NS3 is a highly customizable and exten-

sible simulator that allows us to gain full control over

the event scheduler and the deployment environment.

Thus, it allows us to investigate the exact parameters

that may affect the performance of our algorithms. As

NS3 introduces some limitations on retrieving the ex-

act performance parameters as we discuss later, we do

use these simulations as a proof-of-concept. Further ex-

periments in real systems are necessary to reveal more

realistic differences between the algorithms.

Experimentation Platform. The general testbed of

our experiments consists of a single writer, a set of read-

ers, and a set servers. We assume that f = 1 servers

may fail. This assumption was chosen to subject the

system to high communication traffic, since every oper-

ation would wait for all but one servers to reply (iron-

ically, crashes reduce network traffic). Communication

between the nodes is established via point to point bidi-

rectional links implemented with a DropTail queue. For

Tractable low-delay atomic memory? 23

the purpose of the experimental evaluation, we devel-

oped simulations representing two different topologies,

Series and Star, which mainly differ on the deployment

of server nodes.

Figure 2 presents the two topologies. In both topolo-

gies the clients are divided evenly and are connected on

a series of router nodes. Clients are connected to the

routers with 5Mbps links and 2ms delay, and routers

are connected with 10Mpbs links and 4ms delay. In the

Series topology, Fig.2(a), a server is connected to each

router with 10Mbps bandwidth and 2ms delay. This

topology demonstrates a network where servers are sep-

arated and appear to be in different networks. In the

Star topology, Fig.2(b), all the servers are connected

to a single router with 50Mbps links and 2ms delay,

modeling a network where servers are in close proxim-

ity and well-connected, e.g., a datacenter. Clients are

located uniformly with respect to the routers. We ran

NS3 on a Macintosh machine running OS X El Capi-

tan, with 2.5Ghz Intel Core i7 processor and 16GB of

RAM. The average of 5 samples per scenario provided

the stated operation latencies.

Fig. 2: Simulated topologies.

Performance. The performance of the algorithms is

measured in terms of the ratio of the number of fast

over slow R/W operations - communication burden;

and the total time it takes for an operation to com-

plete - operation latency. Operation latency is affected

by both communication and computation latencies. As

NS3 only provides simulated time events and omits any

computation, we combined two clocks: (a) the simula-

tion clock, and (b) a real time clock. The simulation

Figures |S| Read Rate

(sec)
Inv. Scheme Topology

3(a) 15 4.6 fix star
3(b) 15 2.3 fix star
3(c) 30 2.3 fix star
3(d) 15 4.6 stochastic star
3(e) 15 2.3 stochastic star
3(f) 15 2.3 stochastic series
3(g) 30 4.6 stochastic star
3(h) 30 4.6 stochastic series
3(i) 30 6.9 stochastic series
3(k) 15 2.3 fix star
3(l) 15 4.6 fix star
3(m) 15 4.6 stochastic star
3(n) 15 4.6 stochastic series
3(p) 15 0.0 (Pow-law) fix series
3(q) 15 0.0 (Pow-law) fix star

Table 2: Parameters used for the plots of Fig. 3.

clock was able to estimate the communication time,

while the real clock allowed us obtain the time taken

by the computation at each operation. The sum of the

two yields latency.

Scenarios. Measurements of the performance involves

multiple execution scenarios. The scenarios were de-

signed to test (i) the scalability of the algorithms as

the number of readers and servers increases; (ii) the

contention effect on efficiency, by running different con-

currency scenarios; and (iii) the relation of the effi-

ciency with the topology of the network that we use.

To test scalability we range the number of readers

|R| ∈ [10, 20, 40, 80, 100, 250] and the number of servers

|S| ∈ [10, 15, 20, 25, 30]. To test contention we specify

the frequency of read operation and we run our algo-

rithm for different read intervals (rInt ∈ [2.3, 4.6, 6.9]

seconds). As however in practical systems it is unlikely

to have all reader participants to choose the same read

interval, we also run our simulations with a scenario

where the readers are choosing rInt to be between 0 and

15 seconds based on a power law distribution. We is-

sue write operations every 4 seconds. To test contention

we define two invocation schemes: fixed and stochastic.

In the fixed scheme all operations are scheduled pe-

riodically at a constant interval; every rInt for reads

and wInt for writes. In the stochastic scheme reads are

scheduled randomly from the time intervals [1...rInt].

Finally, to test the effects of topology we run our algo-

rithms using both the Series and Star topologies. Table

2 presents all the parameters we use for obtaining the

results shown in Figure 3. The differences of the sce-

narios are also apparent from the table.

Results. As a general observation, the new algorithms

outperform all the other algorithms in most scenarios.

In particular, it is clear that ccHybrid and OhFast

24 Antonio Fernández Anta et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(k) (l) (m)

(n) (p) (q)

Fig. 3: Experimental Results from NS3 Simulation

Tractable low-delay atomic memory? 25

outperform algorithms ABD and OhSam. In addition,

the two algorithms appear to achieve similar operation

latencies as Sf. A closer examination reveals that in

many scenarios Sf does not perform any slow reads (as

expected according to [8]), whereas in the same execu-

tions both ccHybrid and OhFast require some slow

reads. The fact that the two algorithms perform the

same as Sf, despite the slow reads, demonstrates that

the computation overhead of the two presented algo-

rithms is much less than the computation needed by

Sf; algorithm Sf does not have any overhead due to

the excessive communication in this case. Thus, in ex-

ecutions where Sf will perform more slow operations,

clearly this will result in even worse operation latencies.

More in detail, taking our tests one by one we conclude

to the following observations:

Scalability: The increasing number of readers and

the servers have a negative impact on all the algorithms.

Especially when running our simulations with 250 read-

ers the latency of operations was much greater than

when 100 or less readers participated in the service. We

believe that this is both due to the excessive communi-

cation, but also some overhead might be introduced by

the computation in the NS3 simulator. We do present

sample results in Fig. 2(n), (p), and (q). However, for

ease of comparison between the algorithms, for the rest

of the section we do present the results when up to 100

readers are used. Sample plots that present the average

latency of read operations for this scenario appear in

Fig. 3(b) and (c). In particular, the read latency for al-

gorithms ABD and OhSam increases dramatically even

when few servers participate in the system, Fig. 3(b)

and the latency becomes even higher when we double

the participating servers as shown in Fig. 3(c). On the

other hand, we notice algorithms Sf, ccHybrid and

OhFast, with almost identical behavior, to perform

better and be more efficient than ABD and OhSam.

The increase of the latency in read operations still ex-

ists as the number of participants grows.

Contention: Here we investigate how high concur-

rency, and thus contention, may affect the efficiency

of operations. Contention depends on the following pa-

rameters: (i) the duration of each operation (which we

will measure as the operation latency), (ii) the latency

and symmetry of the network (which we try to cap-

ture with our topologies), and (iii) the generation rate

of operations (which we try to capture with the opera-

tion frequencies and the operation invocation schemes).

We observe that operation frequency affects the latency

of the operations in the fix scheme where operations

are invoked at a constant interval. This can be seen in

Fig. 3(a) and (b). Algorithms ABD and OhSam are not

affected (as all of their reads are slow), but the multi-

speed algorithms ccHybrid and OhFast, are affected

negatively. This behavior is due to the fact that these

algorithms perform a slow read operation per write op-

eration. When the read interval is close to the write

interval, e.g., rInt = 4.6, most of the reads are concur-

rent to the write and thus more reads are slow Fig. 3(l).

This is not observed when rInt = 2.3 (or rInt = 6.9),

see Fig. 3(k). The impact of the slow reads on the opera-

tion latency can be also seen in Figs. 3(h) and (i) where

algorithms perform much better when the read inter-

val is not close to the write interval, i.e., rInt = 6.9.

Notice that the same behavior is not being observed

when the fix scheme is used but the readers pick their

intervals using a power-law distribution or when the

stochastic scheme is used. The fact that readers pick a

different interval using the power-law distribution, al-

low them to invoke read operations in different points

in time in the fix scheme, see Figs 3(p) and (q). On the

other hand, randomness in the stochastic scheme pre-

vents the operations to be invoked at exactly the same

time, see Figs. 3(d) and (e). Hence, a slow read op-

eration may complete before any read operations that

return the same value are invoked. Therefore, according

to the multi-speed algorithms, once a slow read is com-

pleted, any read operation that succeeds such a read

will be fast. This, results in a low percentage of slow

reads, see Fig. 3(m).

Finally, under the same operation frequency, it ap-

pears that in the stochastic scheme each operation com-

pletes almost two times faster than in the fix scheme,

as shown in Figs. 3(b) and (e). Algorithms, ABD and

OhSam, can be used as points of reference as they

have the same computation and communication re-

quirements in both fix and stochastic scenarios. The dif-

ference can be explained due to the congestion that the

fix scheme introduces in the network. On the contrary, a

stochastic scheme distributes the invocation time inter-

vals of the reads uniformly, reducing the network con-

gestion, and hence operation latency.

Topology: Now, we are interested to examine what

is the impact of the topology on our algorithms. Pair

of plots 3(e)(f) and 3(g)(h) show that topology has

an impact on the performance and the efficiency of

all the algorithms. Most importantly, we can observe

that OhSam and OhFast are the two algorithms that

are affected the most. In particular, while in Fig. 3(e)

OhSam performs better than ABD and OhFast per-

forms similar to ccHybrid and Sf, we notice that

in Fig. 3(f) OhSam performs worse than ABD and

OhFast worse than ccHybrid and Sf. Same observa-

tion can be noticed in Figs. 3(g) and (h) . This behav-

ior is expected as both OhSam and OhFast need to

exchange messages between the servers during a relay

26 Antonio Fernández Anta et al.

phase. The results show clearly that the algorithms us-

ing server-to-server communication perform better in

a Star topology, where servers are well-connected using

high bandwidth links. However, notice that OhFast

performs much better than OhSam since operation re-

lays are not performed for every read operation.

10 Conclusions

In this work we consider the complexity of algo-

rithms that implement atomic SWMR registers in the

asynchronous, message-passing environment where pro-

cesses are prone to crashes. We examined the best

known (in terms of communication delays) algorithm

that implements an atomic SWMR register, Fast, al-

lowing both reads and writes to terminate in a single

communication round. We showed that the predicate

utilized by the Fast to achieve this low latency is NP-

hard, and hence the computation performed by the al-

gorithm is not tractable. Next we presented a new pred-

icate that can be computed in linear time, and showed

how to use it in a revised atomic SWMR algorithm

ccFast that allows operations to complete in a single

communication round. The efficiency of the newly pro-

posed predicate is demonstrated by presenting a linear

time algorithm for its computation.

The shortcoming of ccFast is that it guarantees

atomicity as long as the number of readers is bounded

by |R| < |S|
f − 2 (similar to Fast). To circumvent

this bound we presented two new “multi-speed” al-

gorithms, ccHybrid and OhFast, that implement

atomic SWMR register. Both algorithms use the im-

proved predicate, to achieve single round reads with

small computational overhead. However, to remove con-

straints on the number of readers, both algorithms al-

low some reads to be slow. In ccHybrid the reader

decides whether the operation can terminate after one

round, or requires the second round. In OhFast the

decision of whether operations need to be slow is made

at the servers, and the algorithm allows some opera-

tions to complete in 1 or 1.5 round. Of interest it is to

examine the exact conditions in the participation of the

service that may allow all read operations to complete

in a single round, using this server-side methodology.

Such result will draw the line between on the efficiency

of such algorithms. Simulation results show that in

realistic settings our algorithms outperform algorithms

where all operations are slow, as well as “multi-speed”

algorithms that have high computation overheads.

This work shows that practical implementations of

atomic registers need to take into account communica-

tion, computation, and message bit complexity metrics.

Acknowledgements This work was co-funded by the Euro-
pean Regional Development Fund and the Republic of Cyprus
through the Research and Innovation Foundation (Project:
POST-DOC/0916/0090), by FP7-PEOPLE-2013-IEF grant
ATOMICDFS No:629088, the Spanish grant TIN2017-88749-
R (DiscoEdge), the Region of Madrid EdgeData-CM pro-
gram (P2018/TCS-4499), and the NSF of China grant
61520106005.

References

1. NS3 network simulator. https://www.nsnam.org/.
2. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing

memory robustly in message passing systems. Journal of
the ACM, 42(1):124–142, 1996.

3. Partha Dutta, Rachid Guerraoui, Ron R. Levy, and
Marko Vukolić. Fast access to distributed atomic mem-
ory. SIAM J. Comput., 39(8):37523783, December 2010.

4. Burkhard Englert, Chryssis Georgiou, Peter M. Musial,
Nicolas Nicolaou, and Alexander A. Shvartsman. On the
efficiency of atomic multi-reader, multi-writer distributed
memory. In Proceedings 13th International Conference On
Principle Of DIstributed Systems (OPODIS 09), pages 240–
254, 2009.

5. A. Fernández Anta, N. Nicolaou, and A. Popa. Making
”fast” atomic operations computationally tractable. In
Proceedings 19th International Conference On Principle Of

DIstributed Systems (OPODIS 15), 2015.
6. Antonio Fernández Anta, Theophanis Hadjistasi, and

Nicolas Nicolaou. Computationally light “multi-speed”
atomic memory. In International Conference on Principles

Of Distributed Systems, OPODIS’16, 2016.
7. M. R. Garey and D. S. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness (Se-

ries of Books in the Mathematical Sciences). W. H. Free-
man, first edition edition, 1979.

8. Chryssis Georgiou, Sotirios Kentros, Nicolas C. Nicolaou,
and Alexander A. Shvartsman. Analyzing the number of
slow reads for semifast atomic read/write register imple-
mentations. In Proceedings Parallel and Distributed Com-

puting and Systems (PDCS09), pages 229–236, 2009.
9. Chryssis Georgiou, Nicolas Nicolaou, Alexander Russel,

and Alexander A. Shvartsman. Towards feasible imple-
mentations of low-latency multi-writer atomic registers.
In 10th Annual IEEE International Symposium on Network

Computing and Applications, August 2011.
10. Chryssis Georgiou, Nicolas C. Nicolaou, and Alexan-

der A. Shvartsman. On the robustness of (semi) fast
quorum-based implementations of atomic shared mem-
ory. In DISC ’08: Proceedings of the 22nd interna-

tional symposium on Distributed Computing, pages 289–
304, Berlin, Heidelberg, 2008. Springer-Verlag.

11. Chryssis Georgiou, Nicolas C. Nicolaou, and Alexan-
der A. Shvartsman. Fault-tolerant semifast implemen-
tations of atomic read/write registers. Journal of Parallel

and Distributed Computing, 69(1):62–79, 2009.
12. T. Hadjistasi, N. Nicolaou, and A. A. Schwarzmann. Brief

announcement: Oh-ram! one and a half round read/write
atomic memory. In Proceedings of the 2016 ACM Sympo-
sium on Principles of Distributed Computing, PODC ’16,
pages 353–355, New York, NY, USA, 2016. ACM.

13. Theophanis Hadjistasi, Nicolas C. Nicolaou, and Alexan-
der A. Schwarzmann. Oh-ram! one and a half round
atomic memory. In Networked Systems - 5th International
Conference, NETYS 2017, Marrakech, Morocco, May 17-19,
2017, Proceedings, pages 117–132, 2017.

Tractable low-delay atomic memory? 27

14. Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems

(TOPLAS), 12(3):463–492, 1990.
15. Leslie Lamport. How to make a multiprocessor computer

that correctly executes multiprocess progranm. IEEE
Transactions on Computers, 28(9):690–691, 1979.

16. Nancy A. Lynch. Distributed Algorithms. Morgan Kauf-
mann Publishers, 1996.

17. Nancy A. Lynch and Alexander A. Shvartsman. Ro-
bust emulation of shared memory using dynamic quorum-
acknowledged broadcasts. In Proceedings of Symposium on
Fault-Tolerant Computing, pages 272–281, 1997.

18. Eduardo C. Xavier. A note on a maximum k-subset
intersection problem. Information Processing Letters,
112(12):471 – 472, 2012.

