
System Implementation and Experimental Findings

Andria Trigeorgi
trigeorgi.andria@ucy.ac.cy

University of Cyprus, Nicosia Cyprus

COLLABORATE Project Final Seminar 2021

Andria Trigeorgi Implementation and Experiments COLLABORATE 1 / 58

trigeorgi.andria@ucy.ac.cy

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 2 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 3 / 58

Comparative table

Algorithm/
System

Data
scalability

Data
Concur-
rency

Consistency
guaran-
tees

Versioning Data
Stripping

ABD NO YES strong NO NO

LDR YES YES strong NO NO

CoABD NO YES strong YES NO

GFS YES concurrent
appends

relaxed YES YES

HDFS YES one
writer at
a time

strong
(centr.)

NO YES

Dropbox YES conflicting
copies

eventual YES YES

Blobseer YES YES strong
(centr.)

YES YES

CoBFS YES YES strong YES YES

Andria Trigeorgi Implementation and Experiments COLLABORATE 4 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 5 / 58

Our Goal

The development of a Robust and Strongly Consistent DSS
while providing highly concurrent access to its users and
maintaining strong consistency.

Andria Trigeorgi Implementation and Experiments COLLABORATE 6 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 7 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 8 / 58

Design

CoBFS: a Distributed File System with fragmented objects

Each object is fragmented into blocks
Allows big amounts to be distributed
all over the servers

Avoids contention for concurrent
accesses to different blocks

Each block is linearizable and coverable

Fragmented object: Each f is a list of blocks. The first block is the
bgen. Each block has the id of its next block.

Andria Trigeorgi Implementation and Experiments COLLABORATE 9 / 58

Design

CoBFS: a Distributed File System with fragmented objects

Each object is fragmented into blocks
Allows big amounts to be distributed
all over the servers

Avoids contention for concurrent
accesses to different blocks

Each block is linearizable and coverable

Fragmented object: Each f is a list of blocks. The first block is the
bgen. Each block has the id of its next block.

Andria Trigeorgi Implementation and Experiments COLLABORATE 9 / 58

Design

CoBFS: a Distributed File System with fragmented objects

Each object is fragmented into blocks
Allows big amounts to be distributed
all over the servers

Avoids contention for concurrent
accesses to different blocks

Each block is linearizable and coverable

Fragmented object: Each f is a list of blocks. The first block is the
bgen. Each block has the id of its next block.

Andria Trigeorgi Implementation and Experiments COLLABORATE 9 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 10 / 58

Basic Architecture

Figure: The basic architecture of CoBFS

Andria Trigeorgi Implementation and Experiments COLLABORATE 11 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 12 / 58

Write/Update operation

Block Division: splits a f into blocks based on its contents, using
rabin fingerprints.

M. O. Rabin, “Fingerprinting by random polynomials,” Center for Research in Computing Techn., Aiken Computation
Laboratory, Univ., no. TR-15-81. pp. 15–18, 1981.

Andria Trigeorgi Implementation and Experiments COLLABORATE 13 / 58

Block Matching: Use a string matching algorithm to find the
differences between the new hashes and the old hashes in the form of
the statuses: (i) equality, (ii) modified, (iii) inserted, (iv) deleted.

Block Updates:
(i) equality, i.e. hashi = hash(bj) ⇒ Di=D(bj)
(ii) modified ⇒ an update is performed to modify the D(bj) to Di

(iii) inserted ⇒ an update is performed to create the new blocks
(iv) deleted ⇒ is treated as a modification that sets an empty value

Black,P.:Ratcliff pattern recognition.Dictionary of Algorithms and Data Structures(2021)

Andria Trigeorgi Implementation and Experiments COLLABORATE 14 / 58

Read operation

Read Optimization in DSMM: In the first phase, if a server has a
smaller tag than the reader, it replies only with its tag. The reader
performs the second phase only when it has a smaller tag than the one
found in the first phase.

Andria Trigeorgi Implementation and Experiments COLLABORATE 15 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 16 / 58

ARES : Adaptive , Reconfigurable , Erasure coded ,
Atomic Storage

ARES is composed of three main components:

a reconfiguration protocol
a read/write protocol
a set of data access primitives (DAPs): ABD, EC

Reconfiguration service:

mask hosts failures by adding/removing servers
switching between storage algorithms (DAPs)

1

1Nicolaou, N., Cadambe, V., Prakash, N., Trigeorgi, A. et al. (2021). ARES :
Adaptive , Reconfigurable , Erasure coded , Atomic Storage, 1(1).

Andria Trigeorgi Implementation and Experiments COLLABORATE 17 / 58

ARES : Adaptive , Reconfigurable , Erasure coded ,
Atomic Storage

ARES is composed of three main components:

a reconfiguration protocol
a read/write protocol
a set of data access primitives (DAPs): ABD, EC

Reconfiguration service:

mask hosts failures by adding/removing servers
switching between storage algorithms (DAPs)

1

1Nicolaou, N., Cadambe, V., Prakash, N., Trigeorgi, A. et al. (2021). ARES :
Adaptive , Reconfigurable , Erasure coded , Atomic Storage, 1(1).

Andria Trigeorgi Implementation and Experiments COLLABORATE 17 / 58

Erasure-Coded (EC) approaches

(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers

BUT reads and writes are still applied on the entire object

Andria Trigeorgi Implementation and Experiments COLLABORATE 18 / 58

Figure: Update operation

Figure: Read operation

Andria Trigeorgi Implementation and Experiments COLLABORATE 19 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 20 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 21 / 58

How we Run an Experiment

There are two main steps to run an experiment:

booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled

environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance.

Ansible: a tool to automate different IT tasks.

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 / 58

How we Run an Experiment

There are two main steps to run an experiment:

booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled

environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance.

Ansible: a tool to automate different IT tasks.

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 / 58

How we Run an Experiment

There are two main steps to run an experiment:

booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled

environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance.

Ansible: a tool to automate different IT tasks.

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 / 58

How we Run an Experiment

There are two main steps to run an experiment:

booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled

environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance.

Ansible: a tool to automate different IT tasks.

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 / 58

How we Run an Experiment

There are two main steps to run an experiment:

booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled

environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance.

Ansible: a tool to automate different IT tasks.

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 / 58

Ansible

Andria Trigeorgi Implementation and Experiments COLLABORATE 23 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 24 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 24 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 24 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 24 / 58

AWS Global Map

Andria Trigeorgi Implementation and Experiments COLLABORATE 25 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 26 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 27 / 58

Types of Scenarios:

Performance VS. Scalability: examine performance as the number
of service participants increases

Performance VS. File Size: examine performance when using
different initial file sizes

Performance VS. Block Size: examine performance under different
block sizes (CoBFS only)

Andria Trigeorgi Implementation and Experiments COLLABORATE 28 / 58

Scalability results for algorithms CoABD and CoBFS

As each writer has to update only the affected blocks, the update operation latency in
CoBFS is always smaller

Concurrency: As the number of writers increases (hence concurrency), the number of
unsuccessful updates in CoABD is greater.

the higher successful ratio in CoBFS provides more data and hence CoBFS read is slower

Andria Trigeorgi Implementation and Experiments COLLABORATE 29 / 58

File Size results for algorithms CoABD and CoBFS

the update latency of CoBFS remains at extremely low levels, although the file size
increases.

a read optimization decreases significantly the CoBFS read latency, since it is more
probable for a reader to already have the last version of some blocks.

Andria Trigeorgi Implementation and Experiments COLLABORATE 30 / 58

Block Size results for CoBFS algorithm

further increase of bsize forces the decrease of the CoBFS latencies

Concurrency: with a larger number of blocks, the probability of two writes to collide
decreases. ⇒ better success rate

Andria Trigeorgi Implementation and Experiments COLLABORATE 31 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 32 / 58

Types of Scenarios:

Performance VS. File Size: evaluate how the read and write
latencies are affected by the size of the shared object.

Performance VS. Scalability of Readers: compare the read and
write latency of the system with two different storage algorithms,
while the readers increase.

Changing Reconfigurations (Emulab): In this scenario, we evaluate
how the read and write latencies are affected when increasing the
number of readers, while also changing the storage algorithm.

Performance VS.k (EC only): examine the read and write latencies
with different numbers of k (parameter of Reed-Solomon)

Andria Trigeorgi Implementation and Experiments COLLABORATE 33 / 58

File Size results for ARES algorithm

the read and write latencies of both storage algorithms remain in low levels until 16 MB

the write operation of EC algorithm is the faster

the larger messages sent by ABD result in slower read operations

Andria Trigeorgi Implementation and Experiments COLLABORATE 34 / 58

Reader Scalability results for ARES algorithm

the reduced message size of read and write operation in EC keep their latencies lower than
the coresponding latencies of ABD

Andria Trigeorgi Implementation and Experiments COLLABORATE 35 / 58

Changing Reconfigurations results for ARES algorithm

(i) (ii)

(i) the reconfigurer chooses randomly between the two storage algorithms

(ii) the reconfigurer switches between the two storage algorithms

our choice of k (=parity servers) minimizes the coded fragment size but introduces bigger
quorums and thus larger communication overhead. ⇒ in smaller file sizes, the ARES may
not benefit so much from the coding

the reconfiguration delays is higher than the delays of all other operations.

Andria Trigeorgi Implementation and Experiments COLLABORATE 36 / 58

k Scalability results for ARES algorithm

small k (=smaller number of data fragments) ⇒ bigger sizes of the fragments and higher
redundancy.

The write latency seems to be less affected by the number of k since the encoding is
considerably faster as it requires less computation.

Andria Trigeorgi Implementation and Experiments COLLABORATE 37 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 38 / 58

Types of Scenarios:

Performance VS. Initial File Sizes: examine performance when
using different initial file sizes

Performance VS. Scalability of nodes under concurrency:
examine performance as the number of service participants increases

|R| and |W |: [5, 10,15, 20, 25], |S |: [3, 5, 7, 9, 11].
parities: [1, 2, 3, 4, 5]
the clients and servers are distributed in a round-robin fashion.
we calculate all possible combinations of readers, writers and servers
where the number of readers or writers is kept to 5.

Performance VS. Block Sizes: examine performance under
different block sizes (only for algorithms use the FM module)

Andria Trigeorgi Implementation and Experiments COLLABORATE 39 / 58

File Size results

the update latency of fragmented algorithms achieve significantly smaller write latency,
when the file size increases.

the BI computation latency contributes significantly to the increase of fragmented
algorithms’ update latency.

Andria Trigeorgi Implementation and Experiments COLLABORATE 40 / 58

File Size results

the read latency of CoABD-F is much smaller than of COABD.

the ARES-F client has a stable overhead (read-config) for each block request of file
update operation.

Andria Trigeorgi Implementation and Experiments COLLABORATE 41 / 58

Scalability Results

the write latency of ARESCOEC is the lowest among non-fragmented algorithms because
of the striping level.

the ARES client has a stable overhead (read-config) for each block request.

the fragmented algorithms perform significantly better write latency.

Andria Trigeorgi Implementation and Experiments COLLABORATE 42 / 58

Scalability Results

due to the block allocation strategy in fragment algorithms, more data are successfully
written ⇒ slower ARES read operation

the file size in non-fragmented algorithms stays almost unchanged as the number of
servers increases since the cross marks are not widely spread.

Andria Trigeorgi Implementation and Experiments COLLABORATE 43 / 58

Min/Avg Block Sizes results

larger min/avg block sizes are used ⇒ the update latency reaches its highest values since
larger blocks need to be transferred.

too small min/avg block sizes ⇒ more new blocks during update operations ⇒ more
update block operations, and hence slightly higher update latency.

smaller block sizes ⇒ more read block operations to obtain the file’s value.

Andria Trigeorgi Implementation and Experiments COLLABORATE 44 / 58

Min/Avg/Max Block Sizes’ results

all the algorithms achieve the maximal update latency as the block size gets larger.

a larger block needs more time to be updated in the shared memory level.

Andria Trigeorgi Implementation and Experiments COLLABORATE 45 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 46 / 58

Types of Scenarios:

Performance VS. Initial File Sizes: examine performance when
using different initial file sizes

Performance VS. Scalability of nodes under concurrency:
examine performance as the number of service participants increases

Performance VS. Block Sizes: examine performance under
different block sizes (only for algorithms use the FM module)

Changing Reconfigurations: In this scenario, we evaluate how the
read and write latencies are affected when increasing the number of
readers/writers, while changing the storage algorithm and the
reconfigurer chooses randomly the number of servers between [3, 5, 7,
9, 11].

parities: 3 servers: 1, 5 servers: 2, 7 servers: 3, 9 servers: 4, 11 servers: 5

Andria Trigeorgi Implementation and Experiments COLLABORATE 47 / 58

File Size results

only Fragmented Algorithms

the update latency of fragmented algorithms remains at extremely low levels, although the
file size increases.

successful file updates achieved by fragmented algorithms are significantly higher (the
probability of two writes to collide on a single block decreases as the file size increases)

Andria Trigeorgi Implementation and Experiments COLLABORATE 48 / 58

File Size results

only Fragmented Algorithms

the fragmented algorithms has lower read latency.

Andria Trigeorgi Implementation and Experiments COLLABORATE 49 / 58

Scalability Results

Andria Trigeorgi Implementation and Experiments COLLABORATE 50 / 58

Scalability Results

Andria Trigeorgi Implementation and Experiments COLLABORATE 51 / 58

Min/Avg Block Sizes results

Andria Trigeorgi Implementation and Experiments COLLABORATE 52 / 58

Min/Avg/Max Block Sizes’ results

Andria Trigeorgi Implementation and Experiments COLLABORATE 53 / 58

Changing Reconfigurations results - Non Fragmented
ARES

Andria Trigeorgi Implementation and Experiments COLLABORATE 54 / 58

Changing Reconfigurations results - Fragmented ARES

Andria Trigeorgi Implementation and Experiments COLLABORATE 55 / 58

Overview

1 Introduction
Comparative Table
Purpose

2 CoBFS
Design
Basic Architecture
Update and Read operations
ARES

3 How we run an experiment
How we run an experiment

4 Evaluation
CoBFS VS. CoABD - Emulab testbed
ARES - Emulab testbed
all algorithms - AWS testbed
all algorithms - Emulab testbed

5 Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE 56 / 58

Trade-offs and Conclusions

Block size of FM. trade-off between smaller blocks in order to improve
the concurrency and the cost of reading these blocks.
Parity of EC. trade-off between operation latency and fault-tolerance in
the system: the further increase of the parity (and thus higher
fault-tolerance) the larger the latency.

Our algorithm, CoBFS , has the following advantages:

High Concurrent accesses

Strong consistency

Large file sizes (tested up to 1GB file)

Andria Trigeorgi Implementation and Experiments COLLABORATE 57 / 58

Thanks for your attention! Any questions?

Andria Trigeorgi Implementation and Experiments COLLABORATE 58 / 58

Overview

Challenges for Distributed Shared Storage Systems
Steps on Emulab
Execute the Scenarios using Ansible

Andria Trigeorgi Implementation and Experiments COLLABORATE 59 / 58

Challenges for Distributed Shared Storage Systems

Data scalability

Data survivability + System availability =⇒ Data replication

Storage efficiency

Communication overhead

Concurrent access

Consistency Semantics

Linearizability: if top1 < top2, then the op1 must occur before op2
in the sequence seen by all processes.

M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent Objects,” ACM Trans. Program. Lang.
Syst., vol. 12, no. 3, pp. 463–492, 1990.

Andria Trigeorgi Implementation and Experiments COLLABORATE 60 / 58

Fragmented Linearizability

(a) Linearizability on the whole object (b) Fragmented Linearizability

Fragmented Linearizability guarantees that all concurrent operations on different

blocks prevail, and only concurrent operations on the same blocks are conflicting.

M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent Objects,” ACM Trans. Program. Lang.
Syst., vol. 12, no. 3, pp. 463–492, 1990.Andria Trigeorgi Implementation and Experiments COLLABORATE 61 / 58

Versioning - Coverability

Coverability guarantees that an update succeeds when the writer has the latest

version of the object before updating it. Otherwise, an update becomes a read.

The selected emulation to ensure consistency in our system is the coverable

version of MWMR ABD (CoABD).

C. G. Nicolas Nicolaou, Antonio Fernández Anta, “Cover-ability: Consistent versioning in asynchronous, fail-prone,
message-passing environments.”

Andria Trigeorgi Implementation and Experiments COLLABORATE 62 / 58

Overview

Challenges for Distributed Shared Storage Systems
Steps on Emulab
Execute the Scenarios using Ansible

Andria Trigeorgi Implementation and Experiments COLLABORATE 63 / 58

An experiment on Emulab

3 Node Types

writer w ∈ W : a client that dispatches write requests to servers.

reader r ∈ R: a client that dispatches read requests to servers.

server s ∈ S :listens for requests & maintains the object replicas.

Performance metric

Operation latency: the time it takes for a write/read operation to
complete (from the client’s point of view)

Scenario

examine the operation latency as the number of writers increases.

|W | in the set {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
|R|, |S | = 10

Andria Trigeorgi Implementation and Experiments COLLABORATE 64 / 58

Create Profile - Upload a geni-lib script in Python

Andria Trigeorgi Implementation and Experiments COLLABORATE 65 / 58

Hardware & Software

a routable control ip on the Proxy Server

Parameters:
OS: ’UBUNTU 18.04’
Hardware Type: d710 with two 2.4 GHz
64-bit 8-Core E5-2630 ”Haswell”
processors and 64 GB RAM.

Andria Trigeorgi Implementation and Experiments COLLABORATE 66 / 58

Tunable Parameters

Default Traffic shaping parameters
100Mb bandwidth on VMs, and no delay or packet loss.

User-specified parameters

Andria Trigeorgi Implementation and Experiments COLLABORATE 67 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 68 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 68 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 68 / 58

Important!

To access a VM node through ssh, it needs a public IP!

Routable IPs are a limited resource!

Increase the limit of the number of ssh connections on the

proxy server (update the file ”/etc/ssh/sshd config”)

Andria Trigeorgi Implementation and Experiments COLLABORATE 68 / 58

Overview

Challenges for Distributed Shared Storage Systems
Steps on Emulab
Execute the Scenarios using Ansible

Andria Trigeorgi Implementation and Experiments COLLABORATE 69 / 58

Create a config file with the remote hosts

Andria Trigeorgi Implementation and Experiments COLLABORATE 70 / 58

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters.

Playbook 2: Run the Baseline phase where all the nodes will be

notified of the file.

Playbook 3: Readers and writers run a specific number of

operations.

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.

Playbook 5: Execute a read operation to read the final file.

Playbook 6: Fetch logs.

Andria Trigeorgi Implementation and Experiments COLLABORATE 71 / 58

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters.

Playbook 2: Run the Baseline phase where all the nodes will be

notified of the file.

Playbook 3: Readers and writers run a specific number of

operations.

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.

Playbook 5: Execute a read operation to read the final file.

Playbook 6: Fetch logs.

Andria Trigeorgi Implementation and Experiments COLLABORATE 71 / 58

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters.

Playbook 2: Run the Baseline phase where all the nodes will be

notified of the file.

Playbook 3: Readers and writers run a specific number of

operations.

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.

Playbook 5: Execute a read operation to read the final file.

Playbook 6: Fetch logs.

Andria Trigeorgi Implementation and Experiments COLLABORATE 71 / 58

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters.

Playbook 2: Run the Baseline phase where all the nodes will be

notified of the file.

Playbook 3: Readers and writers run a specific number of

operations.

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.

Playbook 5: Execute a read operation to read the final file.

Playbook 6: Fetch logs.

Andria Trigeorgi Implementation and Experiments COLLABORATE 71 / 58

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters.

Playbook 2: Run the Baseline phase where all the nodes will be

notified of the file.

Playbook 3: Readers and writers run a specific number of

operations.

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.

Playbook 5: Execute a read operation to read the final file.

Playbook 6: Fetch logs.

Andria Trigeorgi Implementation and Experiments COLLABORATE 71 / 58

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters.

Playbook 2: Run the Baseline phase where all the nodes will be

notified of the file.

Playbook 3: Readers and writers run a specific number of

operations.

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.

Playbook 5: Execute a read operation to read the final file.

Playbook 6: Fetch logs.
Andria Trigeorgi Implementation and Experiments COLLABORATE 71 / 58

	Introduction
	Comparative Table
	Purpose

	CoBFS
	Design
	Basic Architecture
	Update and Read operations
	ARES

	How we run an experiment
	How we run an experiment

	Evaluation
	CoBFS VS. CoABD - Emulab testbed
	ARES - Emulab testbed
	all algorithms - AWS testbed
	all algorithms - Emulab testbed

	Conclusions
	Appendix
	Challenges for Distributed Shared Storage Systems
	Steps on Emulab
	Execute the Scenarios using Ansible

