System Implementation and Experimental Findings

Andria Trigeorgi
trigeorgi.andria@ucy.ac.cy

University of Cyprus, Nicosia Cyprus

COLLABORATE Project Final Seminar 2021

&, University § J’{ STAI‘!T | DaOwaT European Union 4\77¢

o H A iversity dea INNOVATION é

Elg,_l‘y,.s!,s, L | of Cyprus | 1 e FOUNDATION “Eumnﬂnmml\ o
- B lin)

Development Fund et ctOps

Andria Trigeorgi Implementation and Experiments COLLABORATE

trigeorgi.andria@ucy.ac.cy

Overview

0 Introduction
@ Comparative Table
@ Purpose

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

0 Introduction
@ Comparative Table

Andria Trigeorgi Implementation and Experiments COLLABORATE

Comparative table

Algorithm /| Data Data Consistency Versioning | Data

System scalability | Concur- guaran- Stripping
rency tees

ABD NO YES strong NO NO

LDR YES YES strong NO NO

CoABD NO YES strong YES NO

GFS YES concurrent| relaxed YES YES
appends

HDFS YES one strong NO YES
writer at | (centr.)
a time

Dropbox | YES conflicting | eventual YES YES
copies

Blobseer | YES YES strong YES YES

(centr.)
CoBFS YES YES strong YES YES

Andria Trigeorgi Implementation and Experiments COLLABORATE 4/58

Overview

0 Introduction

@ Purpose

dria Trigeorgi Implementation and Experiments COLLABORATE

The development of a Robust and Strongly Consistent DSS
while providing highly concurrent access to its users and
maintaining strong consistency.

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

© CoBFs
@ Design
@ Basic Architecture
@ Update and Read operations
@ ARES

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

© CoBFs
@ Design

Andria Trigeorgi Implementation and Experiments COLLABORATE

CoOBFS: a Distributed File System with fragmented objects

Andria Trigeorgi Implementation and Experiments COLLABORATE

CoOBFS: a Distributed File System with fragmented objects

, Each object is fragmented into blocks
object f . N
! o Allows big amounts to be distributed
all over the servers

blocks by — by °
// \ e Avoids contention for concurrent
blocks .
F accesses to different blocks
servers @ @ --- -

o Each block is linearizable and coverable

Andria Trigeorgi Implementation and Experiments COLLABORATE

CoOBFS: a Distributed File System with fragmented objects

obiect . Each object is fragmented into blocks
: l o Allows big amounts to be distributed

all over the servers
blocks by — b, °

e Avoids contention for concurrent
blocks .

F accesses to different blocks

servers

o Each block is linearizable and coverable

o Fragmented object: Each f is a list of blocks. The first block is the
bgen. Each block has the id of its next block.

Andria Trigeorgi Implementation and Experiments COLLABORATE 9/58

Overview

© CoBFs

@ Basic Architecture

Andria Trigeorgi Implementation and Experiments COLLABORATE

JR—
Client;

Application Layer

(" Fragmentation Module "

(" Block identification |

I Roling Hash I
Block Hash
Saquence
Matching

dria Trigeorgi

I- $5M Operations

Basic Architecture

|
—
DSM Client,

h

Distributed Shared Memory

Distributed Shared Memory Module

-I:_

DSM Glient,

—

Figure: The basic architecture of COBFS

Implementation and Experiments

I DS5M Operations

=
Clieng

Application Layer

(~ Fragmentation Module |

/” Block Identification "\

I Foling Hash I
Block Hash
Sequence

. Maiching

COLLABORATE

11/58

Overview

© CoBFs

@ Update and Read operations

Andria Trigeorgi Implementation and Experiments COLLABORATE 12 /58

Write/Update operation

@ Block Division: splits a f into blocks based on its contents, using
rabin fingerprints.

Beggining of the file:

Skip Min

(min block size)

Max Boundary
(max block size)

———
window
size

fingerprint *= prime
fingerprint += cn No
fingerprint -= previous_ch

~———> Shiftone Byte

it fingerprint % average block size == prime

or
block size > max block size

s l

fingerprint = Boundary

M. O. Rabin, “Fingerprinting by random polynomials,” Center for Research in Computing Techn., Aiken Computation
Laboratory, Univ., no. TR-15-81. pp. 15-18, 1981.
dria Trigeorgi tation and Experiments COLLABORATE

@ Block Matching: Use a string matching algorithm to find the
differences between the new hashes and the old hashes in the form of
the statuses: (i) equality, (if) modified, (iii) inserted, (iv) deleted.

@ Block Updates:
(i) equality, i.e. hash; = hash(b;) = Di=D(bj)
(if) modified = an update is performed to modify the D(b;) to D;
(iii) inserted = an update is performed to create the new blocks
(iv) deleted = is treated as a modification that sets an empty value

Black,P.:Ratcliff pattern recognition.Dictionary of Algorithms and Data Structures(2021)
Andria Trigeorgi Implementation and Experiments COLLABORATE 14 /58

Read operation

Block 0 Block 1 Block 2
(Genesis Block) (Last Block)
next: Block 1 next: Block 2 next: Mull
filename ... | Hash.. | __Hash ... |
Empty Data Data Data

E T Ed

Read Optimization in DSMM: In the first phase, if a server has a
smaller tag than the reader, it replies only with its tag. The reader
performs the second phase only when it has a smaller tag than the one
found in the first phase.

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

© CoBFs

e ARES

Andria Trigeorgi Implementation and Experiments COLLABORATE

ARES : Adaptive , Reconfigurable , Erasure coded ,

Atomic Storage

@ ARES is composed of three main components:

e a reconfiguration protocol

e a read/write protocol
e a set of data access primitives (DAPs): ABD, EC

!Nicolaou, N., Cadambe, V., Prakash, N., Trigeorgi, A. et al. (2021). ARES :
Adaptive , Reconfigurable , Erasure coded , Atomic Storage, 1(1):

COLLABORATE

Andria Trigeorgi Implementation and Experiments

ARES : Adaptive , Reconfigurable , Erasure coded ,

Atomic Storage

@ ARES is composed of three main components:

e a reconfiguration protocol

e a read/write protocol
e a set of data access primitives (DAPs): ABD, EC

@ Reconfiguration service:
o mask hosts failures by adding/removing servers
o switching between storage algorithms (DAPs)

!Nicolaou, N., Cadambe, V., Prakash, N., Trigeorgi, A. et al. (2021). ARES :
Adaptive , Reconfigurable , Erasure coded , Atomic Storage, 1(1):

COLLABORATE

Andria Trigeorgi Implementation and Experiments

Erasure-Coded (EC) approaches

Encoding

data disks

parity disks

=>B850588 0 888

Calculate parity blocks

Decoding

reassemble data

OROX gJeo8=>

Reconstruct failed blocks

Original
Data

(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers

BUT reads and writes are still applied on

Andria Trigeorgi Implementation and Experiments

the entire object

COLLABORATE

Write operation / Distributed Shared Memory Module
Fragmentation Module

[Block Identification

// N
Roling Hash (Distributed Shared Memory \

Encoding

Block Hash
Sequence
Matching

Block Updates
using DSMM

data disks parity disks

> (] 58 ® 8668

Calculate party blocks

DSM Client

y. N
T ——— \
Read Operation
[Distributed Shared Mem A
sruted Shared emory Bkt Bookz
=1
o o
Decodng
\ oaa
martie e
RS |
0 => |
s ‘ |
\ [
\ y fretion
X 4

Figure: Read operation

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

e How we run an experiment
@ How we run an experiment

dria Trigeorgi Implementation and Experiments COLLABORATE

Overview

e How we run an experiment
@ How we run an experiment

dria Trigeorgi Implementation and Experiments COLLABORATE 21/58

How we Run an Experiment

There are two main steps to run an experiment:

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 /58

How we Run an Experiment

There are two main steps to run an experiment:

e booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
e executing each scenario using Ansible Playbooks.

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 /58

How we Run an Experime

There are two main steps to run an experiment:

e booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
e executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled
environmental parameters.

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 /58

How we Run an Experime

There are two main steps to run an experiment:

e booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
e executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled
environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance. amazon’Ecz

webservices™

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 /58

How we Run an Experime

There are two main steps to run an experiment:

e booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
e executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled
environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance. amazon’Ecz

webservices™

Ansible: a tool to automate different IT tasks. e

ANSIBLE

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/

Andria Trigeorgi Implementation and Experiments COLLABORATE 22 /58

Ansible
Playbook

h
YML
E Get pushed to target servers.
====1 Do their work and get removed.
g

Control machine

Andria Trigeorgi Implementation and Experiments COLLABORATE

To access a VM node through ssh, it needs a public IP!

Andria Trigeorgi Implementation and Experiments COLLABORATE 24 /58

To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

Andria Trigeorgi Implementation and Experiments COLLABORATE 24 /58

To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server

Andria Trigeorgi Implementation and Experiments COLLABORATE 24 /58

To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server

@ Increase the limit of the number of ssh connections on the

proxy server (update the file " /etc/ssh/sshd_config")

Andria Trigeorgi Implementation and Experiments COLLABORATE

24 /58

AWS Global Map

Andria Trigeorgi Implementation and Experiments COLLABORATE 25 /58

Overview

e Evaluation
@ CoBFS VS. CoOABD - Emulab testbed
@ ARES - Emulab testbed
@ all algorithms - AWS testbed
@ all algorithms - Emulab testbed

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

e Evaluation
@ CoBFS VS. CoABD - Emulab testbed

Andria Trigeorgi Implementation and Experiments COLLABORATE 27 /58

Types of Scenarios:

o Performance VS. Scalability: examine performance as the number
of service participants increases

o Performance VS. File Size: examine performance when using
different initial file sizes

o Performance VS. Block Size: examine performance under different
block sizes (COBF'S only)

Andria Trigeorgi Implementation and Experiments COLLABORATE

Scalability results for algorithms COABD and CoBFS

UptateOperation Laency (s vs # ofWiers: Uptat Opraion Ltency <) s ¥ of S Read Operatio atecy e v # o Reades
wint4, int4, updates:20, #reads:20, #Servers:10, #Readers:10,inital flesize:16KB, wint:4, 4, Supdates:20, #reads 20, #inters 10, #Readers: ll iniil filesize:18KB, wint4, it:4, Supdates:20, #reads 20, #Senvers:10, #Wirites:10, inital flesize: 1648,
maxBlockSize 64K, minBlockSize: KB, avgBlockSize:BKB N maxBlockSize 64K, minBlockSize: KB, avgBlockSize:BKB N maxBlockSize:S4KB, minBlockSize: KB, avgBlockSize:KB

e COBFS ltency COBFS uptesuces ato. e COBFS tency COBFS pdatesucessrato < COFS tengy

~+ CoMBDlatency oM updaesucess i ~+ CoBDltency I CoMBDupdaesucess i 4+ CoABD ateey
08 o 508) 081
§ . H 2| e
5 il fal # ofbocks N it oo B o
H ¥ H . . w 26
H i S5l wd s s W o ¥ ouslas 6 X
fos . B fos weows w s o g e s . g
A M A H e e ~¢
§ H § H -
H s @ H H -
H W oy g H M
qo4 i ICH S H
o us 11
: oo :
H H
302 2 H2 1

e we We e VB me HE X6 M6 e
00+
k) b 5 o 5 » 5 X b o & 0
#of Witers #of Servers #0f Readers.

@ As each writer has to update only the affected blocks, the update operation latency in
COBFS is always smaller

@ Concurrency: As the number of writers increases (hence concurrency), the number of
unsuccessful updates in COABD is greater.

@ the higher successful ratio in COBFS provides more data and hence COBF'S read is slower

tation and Experiments COLLABORATE

File Size results for

algorithms COABD and CoBFS

Ut Opeotinatercy s s i Sce 2')
winkd, intd, Supdates, #reads:5, #Senvers:S, #Wriers's, #Readers s,
maxBlockSaze:1MB, minBlockSize:S124B, avgBlockSae 51268

UpdaeLatecy of oS () vs il il e) e Opraton Laeny () sl Fle e (2

3
Wik ok, Sucats, reats, Senvers, liters5, Sheaders,

malockSae 14, miBlckSe 126, anBockSzeS 16 malockSae 14, milckSze 5126, BockSzeS 126

Wik o4, Syt reacs, Senvers, itrs, Eheaders,

TR
e CoFStency = CBS ptte icess to T o

- Dty CMBDplesicessrty 9S8

0 g Ll

- I

{10 g

H B %n 3

§ | o tis 0l
] {LH

O

H 5

S9 o

H] %
il leze (2*5)

o CoFS ey
-+ CoMBDltecy
| = CoBFstecy with e ptimization

" Uptte Oprton Lty
= Upat OpertionLatency nthuk ey
¢ Uptte Compuatin aer of P

¢ :
§= $1
5 3
3] :
H £ 101
H
g s
H T
HEl H
B Zgl
251
W 3 PEEERE: 7 8 »

IR
It Fle e B) il leSe (245)

@ the update latency of COBF'S remains at extremely low levels, although the file size

increases.

@ a read optimization decreases significantly the COBF'S read latency, since it is more
probable for a reader to already have the last version of some blocks.

Andria Trigeorgi

tation and Experiments COLLABORATE

Block Size results for COBF'S algorithm

Reac Operation Latency (sec] vs Min/Avg Block Size (2 B}
wint:d, rint:4, £updates:20, £reads:20, #Servers:10, #Wiriters:10, #Readers:10, initial filesize:13KB,
maxBlockSize:54KB

Update Operation Latency (sec) vs Min/Avg Black Size (2 B}
wint:¢, rint:d4, #updates:2C, #reacs:20, £Servers:10, £Writers:10, #Reacers:10, initial_filesize: 18KB,
maxBlockSize 64KB

10 100 10
. CoBFS latency CoBFS update success ratio A - CoBFS latency
\
initial - final # of blocks % S _\
9740 H .
4347 3 \
3179 g5
=3 0 g 505 \
3 3 \
i3 \
4 = %
125 i X
123 03 504 N

[N

° N,

H N

b4 “o2- .
.
————
0.0 0.0
10 n 2 3 1 15 15 10 n vl 13 1 15 16
MinjAvg Block Size (2B} Min/Avg Block Size (2% B}

@ further increase of bsj,e forces the decrease of the COBF'S latencies

@ Concurrency: with a larger number of blocks, the probability of two writes to collide
decreases. = better success rate

tation and Experiments COLLABORATE

Overview

e Evaluation

@ ARES - Emulab testbed

Andria Trigeorgi Implementation and Experiments COLLABORATE

Types of Scenarios:

o Performance VS. File Size: evaluate how the read and write
latencies are affected by the size of the shared object.

o Performance VS. Scalability of Readers: compare the read and
write latency of the system with two different storage algorithms,
while the readers increase.

e Changing Reconfigurations (Emulab): In this scenario, we evaluate
how the read and write latencies are affected when increasing the
number of readers, while also changing the storage algorithm.

e Performance VS.k (EC only): examine the read and write latencies
with different numbers of k (parameter of Reed-Solomon)

Andria Trigeorgi Implementation and Experiments COLLABORATE 33/58

File Size results for ARES algorithm

Operation Latency (sec) vs Initial File Size (2 B)
. wint:2, rint:2, #writes:50, #reads:€0, #Servers:10, #Writers:5, #Readers:5

Viite Operation Latency of £C /f
- Read Operation Latency of EC J
Virite Operation Latency of ABD /
= Read Operation Latency of ABD /
95~ !
)
=
g
H
3
g3
2
4
§
&2
1-
P -
2 Py 2 B % > 2% 7

Initial File Size (2 B}

@ the read and write latencies of both storage algorithms remain in low levels until 16 MB
the write operation of EC algorithm is the faster

@ the larger messages sent by ABD result in slower read operations

tation and Experiments COLLABORATE

Reader Scalability results for ARES algorithm

Operation Latency (sec) vs # of Readers
wint:2, rint:2, recor|nt:13, #writes:60, #reads:60, #reconfigs:6, #Servers:10, #\riters:5, #Recons:1
7

\Vrite Operation Latency of EC

—e~ Read Operation Latency of EC

8] —e— Recon Operation Latency of EC
Write Operation Latency of ABD

=+ Read Operation Latency of ABD
.. Recon Operation Latency of ABD

Operation Latency (sec)

of Readers

@ the reduced message size of read and write operation in EC keep their latencies lower than

the coresponding latencies of ABD

tation and Experiments

COLLABORATE

Changing Reconfigurations results for ARES algorithm

Operation Latency (sec] vs # of Reagers Operation Latency {sec) vs # of Readers
\.IntZ rint:2, reconint:15, #wirites:60, #veads .30, #recorfigs:5, #Servers:10, #Writers:5, #Recons:1, filzsize:¢MB Mntl rint:2, reconint: 13, #writes:50, #reads:60, #reconfigs:6, #Servers:10, #Wiriters:5, #Recons:1, flesize:4MB
Write Operation Latency of EC \rite Operation Latency of £C
6 4~ Read Operation Latency of EC N 4 Read Operation Latency of EC
Write Operation Latency of ABD ° Writs Operation Latency of ABD
=+ Read Operation Latency of ABD = Read Operation Latency of ABD
75 &+ Recon Operation Latency 75 & Recon Operation Latency
& ¢
4 4
24 £
g i
g 5
it / 3
£ A / g
g N / @
51 A SN §2
RN 2 ¢
< “een X
1 e e !
PR
i g et
U] 0 0] 50 .. 0 0 kU] 4 50
of Reaters (1) # of Readers

(i) the reconfigurer chooses randomly between the two storage algorithms
(ii) the reconfigurer switches between the two storage algorithms

our choice of k (=parity servers) minimizes the coded fragment size but introduces bigger
quorums and thus larger communication overhead. = in smaller file sizes, the ARES may
not benefit so much from the coding

the reconfiguration delays is higher than the delays of all other operations.

tation and Experiments COLLABORATE

k Scalability results for ARES algorithm

Operation Latency (sec] vs k

10 WINE2, 12, #nrites:60, #reads:60, #Servers:10, #Wiitars:S, #Readers:S, ilsize:4MB

Vurite Operation Latency of EC
—e— Read Operation Latency of EC
08
H
a2
305
E]
3
g 04-
i
3
2
9
02-
0.0 T T T T

small k (=smaller number of data fragments) = bigger sizes of the fragments and higher
redundancy.

@ The write latency seems to be less affected by the number of k since the encoding is
considerably faster as it requires less computation.

ria Trigeorgi ation and Experiments COLLABORATE

Overview

e Evaluation

@ all algorithms - AWS testbed

Andria Trigeorgi Implementation and Experiments COLLABORATE 38/58

Types of Scenarios:

o Performance VS. Initial File Sizes: examine performance when
using different initial file sizes

o Performance VS. Scalability of nodes under concurrency:
examine performance as the number of service participants increases

|R| and |W]: [5, 10,15, 20, 25], |S]: [3, 5, 7, 9, 11].

parities: [1, 2, 3, 4, 5]

the clients and servers are distributed in a round-robin fashion.

we calculate all possible combinations of readers, writers and servers

where the number of readers or writers is kept to 5.

o Performance VS. Block Sizes: examine performance under
different block sizes (only for algorithms use the FM module)

Andria Trigeorgi Implementation and Experiments COLLABORATE 39/58

File Size results

H
>
5
i
o
w
£
e
2

£R, i BlockSize: 51246, MaxBlock Size: IME

WinBlock ize: 51248, Avg Block Size: $1248, Max Block ize: Mg ' Algorithm: ARES CoEC, e

o URTEOpert o Ltersy
WRIE Computetin Lstency of 2
WRIE Computetin Lstencyof
WRITE Couriction oty

Lo g
y 4385 G 2
#385 CeiCamee <
5 !
5
g0
H
o
g
g,
]
G)
m : oo 1 s H mod s ! Poom ! 5
It FleSize (6) e Pl iz)

the update latency of fragmented algorithms achieve significantly smaller write latency,
when the file size increases.

the Bl computation latency contributes significantly to the increase of fragmented
algorithms’ update latency.

tation and Experiments COLLABORATE

File Size results

MinBlock Size: 51248, Avg Block ize:§1248, Max Block Size: M8 ‘Algorithm: ARES_ CoABD-F,in Bloc Sze: 51248, Avg Block Size: 51248, Max Bleck Size: 148

oy - FEAD Oparator Latensy
; Fead Corfig atency

o 85 e g
i PR i :
R + OMDF 3
. - A CeECed @
3 3 285 CoEC et g
3 s i L
HE g
H] -
: 3 -
H §o e —
in] R .
1 H -
i §

oo
H g
< : ®

03
m i i o 2 5 W ‘ H ™ z i M i : oM 2
lnta File Size (B) Inel Fi e ize (3}

@ the read latency of CoABD-F is much smaller than of COABD.

@ the ARES-F client has a stable overhead (read-config) for each block request of file
update operation.

tation and Experiments COLLABORATE

Scalability Results

InitiaFile Size: 4118, Minjug lock ize: 512K, Mex Block ize: M, #Servers 5, SReaders § ! Initial Fie Size: 4M, Min/Avg Block Size: 512kB, MaxEBlock Sze: M, #5ervers: 11, #Readers: 5

- 8PES CoMRE
o S CHEDF

5 o 89ES CC

- RS COECE

= 3D

o CADE

+ GMDF

WRITE Gperation Latency per flle (sec)

@ the write latency of ARESCOEC is the lowest among non-fragmented algorithms because
of the striping level.

@ the ARES client has a stable overhead (read-config) for each block request.

@ the fragmented algorithms perform significantly better write latency.

ria Trigeorgi ation and Experiments COLLABORATE

Scalability Results

il 4 My S U0 Wi, N s s i 8 0 0 Vi 10

» L
o 0

bl ¥

R

due to the block allocation strategy in fragment algorithms,
written = slower ARES read operation

I s g ki 08 i R s 5 e

EEREE

N

i

.

s

more data are successfully

the file size in non-fragmented algorithms stays almost unchanged as the number of
servers increases since the cross marks are not widely spread.

ria Trigeorgi

ation and Experiments

COLLABORATE

Min/Avg Block Sizes results

InialFle Size: 4MB, Max Block Siz: 1MB ! InitialFie Size: 4NB, Max Block ize: M

o HES CLEDF ¢ o S CMEDF
o A COECE " o MBS COECF
D " e Co0E

READ Operation Latency per File (sec)

Hirvavg 3ocksiz 6) Minitig 3occsize)

@ larger min/avg block sizes are used = the update latency reaches its highest values since
larger blocks need to be transferred.

@ too small min/avg block sizes = more new blocks during update operations = more
update block operations, and hence slightly higher update latency.

@ smaller block sizes = more read block operations to obtain the file's value.

ria Trigeorgi ation and Experiments COLLABORATE

Min/Avg/Max Block Sizes' results

' il Sae 5208 ' (LR ' it et
| Loan)
W
i
o o H
{ i i
N tu
¢ R é
i i i
N ; S A =
: f 3
L) Y, i A
i i
ey, - i
i \ v i 7
B d i ¥ ot H
Lo / ¢ ! ; |
i I <1 o
N » . i . i v
. N -
+ N i
" e . o C - . v
i v
Criey . [RN o i
g e S HrgR 3 s

@ all the algorithms achieve the maximal update latency as the block size gets larger.

@ a larger block needs more time to be updated in the shared memory level.

ation and Experiments COLLABORATE

ria Trigeorgi

Overview

e Evaluation

@ all algorithms - Emulab testbed

dria Trigeorgi Implementation and Experiments COLLABORATE 46 /58

Types of Scenarios:

o Performance VS. Initial File Sizes: examine performance when
using different initial file sizes

o Performance VS. Scalability of nodes under concurrency:
examine performance as the number of service participants increases

o Performance VS. Block Sizes: examine performance under
different block sizes (only for algorithms use the FM module)

e Changing Reconfigurations: In this scenario, we evaluate how the
read and write latencies are affected when increasing the number of
readers/writers, while changing the storage algorithm and the
reconfigurer chooses randomly the number of servers between [3, 5, 7,
9, 11].

parities: 3 servers: 1, 5 servers: 2, 7 servers: 3, 9 servers: 4, 11 servers: 5

Andria Trigeorgi Implementation and Experiments COLLABORATE 47 /58

File Size results

Update Operaton Lezzncy sac) us Il Flesize 2 6) [s Inital il izz (2 8)
Wint3, A0t3, £wies 20, &reads:20, #Serers 1, #Witerss, eReader::s it ot 3. £wries:20, Breat 10, iters 5, #Rezcerss,
maxBlockSizeINB. rinBlacSize'S12KE, avgBlocksize S12KB maBlockSize IV mindloc s 2e:512.43, avgBlocksize 31268
100 7 1w
y CoNED latency CONED-F ltency CoND-F ltency
COABDF latency — - ARES_CcABD Flatency
€0~ — 4RES CoraD latercy 6= — ARES_COECF ith parity 1 latency
) - — . ARES_COECF ith pariy 5 latency s e
5 3 ARES.CoEC with arkty Llatency = 5 7l
350~ 70 ARES COECF with parity Llatency | | 851 f
> 1 ARES CoEC with oarity 5 latercy 1 } 3 J
H 2 s i atety sty lo .
34 & 54 2
3 i i 8 i
1 i g g H
i i P 87 0
[- i ; 0 - .
3 g -
3 7t - 4 8 - - - -
3n- H- -1 = - [-
3 i -4 i/ 1e S -
} -n 4
10- i 1-
i .
- =
i P . =
' !
X 2 2 %] X P a % b
I il Sze (2’ 3) 'l ik size (28]

only Fragmented Algorithms

@ the update latency of fragmented algorithms remains at extremely low levels, although the
file size increases.

@ successful file updates achieved by fragmented algorithms are significantly higher (the
probability of two writes to collide on a single block decreases as the file size increases)

tation and Experiments COLLABORATE 48 /58

ria Trigeorgi Implerr

File Size results

Read Opentan luz'vt‘,k,mws i il Se (2'3)
WS, 3, #wries:2), sreads 2, #5evers 1L, #Wirers 5, #headerss,
i Sz M a3 Sees 26, EE

Read Oparaton Ltency (s2c s e Fie Size (7 8)
I3, 3, #0rks 20, Sreeds 2, ASevers11, #Wrkers 5, .m;vss‘
max ockSie 1B, minB ocksze S12KB, gl

s
S CoreD ency
S CoEC with ary 1 teny , 50
SRS COECH Wit parity 1 etency 3
— S CoECaith oty 3 atncy

+ ARES CORCF gty teney

0-

Kesd Opsration Latency (sec)

1-

ita! il Sz212 3]

@ the fragmented algorithms has lower read latency.

il Fil S2¢ 231

only Fragmented Algorithms

COLLABORATE

Scalability Results

Uptizze Cperation Latency (sec)vs

Upcat Opersrion Latency (secl v # of Witers
WINE:3, 113, #wries:20, #reads:20, #Servers:5, #Reacers:3. it fiesize:4M3, Wink3, P03, $urites:20, $reads 20, £Servers:11 s 5, int %lesizedle,
maxBlockSize:1MB. mnBlac<Size:512KB, avgBlocksize 3 1248 ‘maxBlocksize 1M, min3loc 5 ze 51243, avgBlockSizz 312KB.
2 100 20
ZoABD latency CoMED latency
CoABD-F latency CoMEDF latency CoABDF atency
45— ARES CongDatercy [AES CoABD ltency [AGES _CoABD latency
= LRES COADF latency L1 ARES _COABDF lztency s [727 ARES_CoABD-F latency »
5 = HRES CoClzzency [ARES CoEC latency 5 [AGES CofC latercy
3 — . RES COEC-F latency 1522 ARES_COEGH latency. 3 ~* ARES _COEC-F latenc
3204 <
H -6 3 . @0
3 g 3 K
i B 3
3 § 3 H
H g @ H a3
& o) & Fd
310 3
Eh . 3
a ad - a
3 3
-a
05+
c
15 x 5
of Writers

#of Witers

COLLABORATE

Scalability Results

Read Qozration Ialen(v (se()vs a Ed Keaders Update Operaton _ate of Seruers
WInz3, rint:3, #writes 20, #re: it 2:4VB, wint:3. Ant:3, #writes:20, #1eads:20, #Virers:25, $Readers:, mn ﬂewe AME,
bS48, mnalciaie :uzxs aquIo(Vwe ‘maxBlockSize IME, min3loc 5ize 512¢3, avgBlockSi
3 k)
Cou atency CorED htency 248D ency
CouBDF latency CoMEDF latency CoABDF atency
251 —— ARES_CoABD latency [AGES _CoABD latency
= ZRES_COABD-F latency [727 ARES_CoABD-F latency »
_ — IRES CoEC 5 [AGES CofC latercy
3 = ARES_COEC- latency 3 ECF latens,
ERT 5
3 J
3 . @
3 3 E
3 3 7
5 th H
3 3 * H
H) o ?
3 & Fd
S . S . .
3 10- R 210-
3 e ———— ————————— —— 3 .
F ——— H
O — 2
€5- = 05
C o
5o 75 w0 BS 150 s 10 50 0
of Readers. #of Servers

COLLABORATE

Min/Avg Block Sizes results

Update Ooeation Latency (ec)vs ity Block iz (2*E) Read Operaton Latencyisec s Mg Bock Size (2* 31
Wint:3. Ant:3, #wiites:20, #reads:20, #Servers 11, #Niters'S, #Readers 5, rit flesiz= 4KB, WINt 3. rint 3, #writes:20, #reads:20, #Servers 11, #Witers s, #Reacers 5, ni: filssize:4KB,
maxglocSize IME mastlockSizs IVE
1 100 7
CoABDF latency CahdD-* atency \ CoABDF latency
— LRES_CoASDF latency L1 ARES _COABDF lztency. — LRES_CoASDF latency
L2 ARES CoEGH latency 5- \ = LRES COEC-F ltancy
-8 \
FI
3 il > \
5 06- I 6 ¢ \
H - ..
3 H £ g
! e 3
5 i . = H 3
3 I ™ H 8
3 i H g AN
Iea- ! - g
& i g AN
2 I o \
3 I 8,
3 i ¢ .,
Pi N \\
EERNE Y L -n .,
4 1- s
i M 4 . g,
i - T Triietd
1 Ty
. :
B [5 5 i B 1 5 1 n 3 1 0
Minfavg Block Size 2° B Min/Avg Block Size (2° 8)

COLLABORATE

Min/Avg/Max Block Sizes'

Update Gperaton Latency {sec) vs Ml Block S2¢ (2B, M Elock Size (27418) Rea Operatcn Latenicy isec] vs MinfAvg Block Siz (2 3), Max Block S2¢ (2:+1 6)
VN3, A0t3, £wites:20, #reads 20, £Servers 11 #Niterss, EReaders 5, rit Flesizz kB, W3, ot 3, #writes 20, #reads 20, £Servers 11, #0iterss, Rezcers . i flesize:dkB,
maxBlocksize 1M

maxehocisize INE
57 100
: COABDF latency Cat30 atency CoSEDF latency .
—+ HRES CoNBDF latency 5.2 ARES CoRBDF Iztency 5. S CoADFlatency
L5 ARES CoECF latency =7 = ARes CoECF atency
-8
3 = Y-
HeS -6 H
3 g 3
3 H 5.
3 8 3
520~ H H
B) H
$ 3
3 3
Sn- ¢ - _,,‘/
n R
5o e,
RS e
10- -
2 5 u 3 * 7
Minyivg Elack Size (2 B), Max Blod: Size 2+ 8)

COLLABORATE

Changing Reconfigurations results - Non Fragmented

JAVR =N

Operetior Latency lsec) vs # of R
A0 e, e, e 0 s aewmevss o lesze .
maxBlockS = IME. mindloccs ze 51343, avgBlockSi

On=valwn lztsrw A sec)vs ¥ of Witers
wink:3, Ank3,recon 15, Sur tes 20, #reads:50, $recons 7 #S2nvers:11, $Readers:5, init flesize AME.
maxdlocSize:1MB mnﬂ\nu‘?\ze 51K, avgBlocksize:3 124

1 El
— LRES COED Wit ltzncy — LRES COABD wite latzncy
+ ARES CotaD read atency 11+ ARES CoABD read atency
25— WRES CoEC urte lateney . — ARES CoEC urte atency
10+ ARES CoEC read latency 10+ ARES CoEC read atency
== RS r2cor ltency == RS recor larency
J20- FELR
4 H
7 T 7
715 715
5 5
H H
210- guo-
es- 05-
¢ o
i 75 100 15 150 15 100 50 H 75 100 15 50 175 00 u5 50
#f Wiers of Readers

COLLABORATE

Changing Reconfigurations results

Fragmented ARES

Qoeration Latency (sec)vs # 07 Witz
VN3, N3, 22N 15, #urtas 50, #reads:60, #recons 7 #Senvars:11, 4Readerss, it flesize AME,
maxBlocksize 1B, nBlac ize 512K, avgBlocksize 31268

— -+ ARES CoARD-F wrte latency
ARES CONBD read latercy
—+ ARES_COECF write atency
ARES COEC reas lzency
ARESF tecon ltency

Operation Latency (sec)

os-
¢
50 735 100 15 150 s 20 50
#of Witers

et s ol s
wint: 3. rint 2 recarl #wites:20, #reads:20, $Servers:11, &Wntevs 5 mn filesize:AME,
eBoci s e oot 17 vt

5-

Operation Latency (sec)

— - LRES CoARD-F wrte It
14+ URES COABD-Fread latency
—+ ARES_COECF writz zcency
-1+ RES_COEC rzad atency
= GRESFF racen ltrcy

50 s 100 15 10 s 20 s 50
4 of Readers

COLLABORATE

Overview

© Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE

Trade-offs and Conclusions

Block size of FM. trade-off between smaller blocks in order to improve
the concurrency and the cost of reading these blocks.

Parity of EC. trade-off between operation latency and fault-tolerance in
the system: the further increase of the parity (and thus higher
fault-tolerance) the larger the latency.

Our algorithm, COBF'S , has the following advantages:
@ High Concurrent accesses
@ Strong consistency
o Large file sizes (tested up to 1GB file)

Andria Trigeorgi Implementation and Experiments COLLABORATE

Thanks for your attention! Any questions?

Andria Trigeorgi Implementation and Experiments COLLABORATE 58 /58

Overview

@ Challenges for Distributed Shared Storage Systems

Andria Trigeorgi Implementation and Experiments COLLABORATE 59 /58

Challenges for Distributed Shared Storage Systems

Data scalability

Data survivability + System availability — Data replication
Storage efficiency

Communication overhead

Concurrent access

Consistency Semantics

Linearizability: if top1 < top2, then the opl must occur before op2
in the sequence seen by all processes.

S WRITE READ)
‘Q <« —— ‘g
N N

Replication @ T T
@ FOO.TXT Availability Consistency

FOO.TXT

M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent Objects,” ACM Trans._Program. Lang.
Syst., vol. 12, no. 3, pp. 463-492, 1990.
Andria Trigeorgi Implementation and Experiments COLLABORATE 60 /58

Fragmented Linearizability

updat:(bn, 0;) , update(bs, Dy)
update(b,, Dy) update(®r, [:1')
.
* time
time read(Dy’, D)
.
read (D7, D) :
— % read(DO')y, read(D1)y;
read(Dy, Dy}) .
N read(Dy, Dy); N read(D0), read(D1')y
*
(a) Linearizability on the whole object (b) Fragmented Linearizability

Fragmented Linearizability guarantees that all concurrent operations on different

blocks prevail, and only concurrent operations on the same blocks are conflicting.

read1({Dg, Dy} readi — read2
— o
time
————
read2(Dg, Dy', Dp)
—e

M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent’Objects,” ACM Trans. Program=Lang:
Andria Trigeorgi Implementation and Experiments COLLABORATE 61/

Versioning - Coverability

cvr-write(ver0) => veri
—
fime N
— —
cvr-write(ver0) => fall - ~
=> propagate ver1 cvr-write(ver!) =>ver2

Coverability guarantees that an update succeeds when the writer has the latest

version of the object before updating it. Otherwise, an update becomes a read.

The selected emulation to ensure consistency in our system is the coverable
version of MWMR ABD (CoABD).

C. G. Nicolas Nicolaou, Antonio Ferndndez Anta, “Cover-ability: Consistent versioning in asynchronous, fail-prone,
message-passing environments.”

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

@ Steps on Emulab

Andria Trigeorgi Implementation and Experiments COLLABORATE

An experiment on Emulab

A‘ 3 Node Types

;/ writer w € W: a client that dispatches write requests to servers.

i reader r € R: a client that dispatches read requests to servers.

server s € S :listens for requests & maintains the object replicas.

@g Performance metric

Operation latency: the time it takes for a write/read operation to
complete (from the client’s point of view)

EE Scenario

examine the operation latency as the number of writers increases.

|W/| in the set {5, 10, 15,20, 25, 30, 35, 40, 45,50}
[R[,|S| =10

Andria Trigeorgi Implementation and Experiments COLLABORATE 64 /58

Create Profile - Upload a in Python

Create Profile

Name @ Project Collaborate

Upload File) | Create Topology [l Edit Code RS

Source code ©

geni-lib script

=
£=2 IO

Andria Trigeorgi Implementation and Experiments COLLABORATE

Hardware & Software

a routable control ip on the Proxy Server

Parameters:

0S: '"UBUNTU 18.04"

Hardware Type: d710 with two 2.4 GHz
64-bit 8-Core E5-2630 "Haswell”
processors and 64 GB RAM.

et
o
SNt "‘ :

Andria Trigeorgi Implementation and Experiments COLLABORATE

Tunable Parameters

Default Traffic shaping parameters
100Mb bandwidth on VMs, and no delay or packet loss.

User-specified parameters

Current Usage: 0 Node Hours, , Prev Month: 88 (30 day rank: 321 of 414 users) @

This profile is parameterized; please make your selections below, [FEECTEPIEIRINE Defaults Last History
and then click Next.

4 Show All Parameter Help
Number of Users' Nodes @ 60
Number of Servers' Nodes © 10

f parameter @

Optional physical node type d710
(d710, etc)
Select OS image o UBUNTU18-64-STD

Andria Trigeorgi Implementation and Experiments COLLABORATE

To access a VM node through ssh, it needs a public IP!

Andria Trigeorgi Implementation and Experiments COLLABORATE 68 /58

To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

Andria Trigeorgi Implementation and Experiments COLLABORATE 68 /58

To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server

Andria Trigeorgi Implementation and Experiments COLLABORATE

To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server

@ Increase the limit of the number of ssh connections on the

proxy server (update the file " /etc/ssh/sshd_config")

Andria Trigeorgi Implementation and Experiments COLLABORATE

Overview

@ Execute the Scenarios using Ansible

dria Trigeorgi Implementation and Experiments COLLABORATE 69 /58

Create a file with the remote hosts

serverl.emulabTestl.collaborate.emulab.net

server[2:10]

ansible_user=
ansible_port=
ansible_ssh_common_args=

daemon [1:50]

ansible_user=
ansible_port=
ansible_ssh_common_args=

daemon [51:6@]

ansible_user=
ansible_port=
ansible_ssh_common_args=

Andria Trigeorgi

Implementation and Experiments

ansible_user=

COLLABORATE

70 /58

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ﬂ

Andria Trigeorgi Implementation and Experiments COLLABORATE

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,7

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. i

Andria Trigeorgi Implementation and Experiments COLLABORATE

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,//

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. i

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O

Andria Trigeorgi Implementation and Experiments COLLABORATE

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,//

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. i

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.

Andria Trigeorgi Implementation and Experiments COLLABORATE

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,7

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. ﬁ

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O

Playbook 4: Wait until the shell command of previous phase is
completed for all clients.

Playbook 5: Execute a read operation to read the final file. i

Andria Trigeorgi Implementation and Experiments COLLABORATE

Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,7

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. ﬁ

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O

Playbook 4: Wait until the shell command of previous phase is
completed for all clients.

Playbook 5: Execute a read operation to read the final file. i

Playbook 6: Fetch logs.

Andria Trigeorgi Implementation and Experiments COLLABORATE 71/58

	Introduction
	Comparative Table
	Purpose

	CoBFS
	Design
	Basic Architecture
	Update and Read operations
	ARES

	How we run an experiment
	How we run an experiment

	Evaluation
	CoBFS VS. CoABD - Emulab testbed
	ARES - Emulab testbed
	all algorithms - AWS testbed
	all algorithms - Emulab testbed

	Conclusions
	Appendix
	Challenges for Distributed Shared Storage Systems
	Steps on Emulab
	Execute the Scenarios using Ansible

