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Comparative table

Algorithm /| Data Data Consistency Versioning | Data

System scalability | Concur- guaran- Stripping
rency tees

ABD NO YES strong NO NO

LDR YES YES strong NO NO

CoABD NO YES strong YES NO

GFS YES concurrent| relaxed YES YES
appends

HDFS YES one strong NO YES
writer at | (centr.)
a time

Dropbox | YES conflicting | eventual YES YES
copies

Blobseer | YES YES strong YES YES

(centr.)
CoBFS YES YES strong YES YES
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Overview

0 Introduction

@ Purpose
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The development of a Robust and Strongly Consistent DSS
while providing highly concurrent access to its users and
maintaining strong consistency.
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CoOBFS: a Distributed File System with fragmented objects
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CoOBFS: a Distributed File System with fragmented objects

, Each object is fragmented into blocks
object f . N
! o Allows big amounts to be distributed
all over the servers

blocks by — by °
// \ e Avoids contention for concurrent
blocks .
F accesses to different blocks
servers @ @ --- -

o Each block is linearizable and coverable
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CoOBFS: a Distributed File System with fragmented objects

obiect . Each object is fragmented into blocks
: l o Allows big amounts to be distributed

all over the servers
blocks by — b, °

e Avoids contention for concurrent
blocks .

F accesses to different blocks

servers . . ......

o Each block is linearizable and coverable

o Fragmented object: Each f is a list of blocks. The first block is the
bgen. Each block has the id of its next block.
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Overview

© CoBFs

@ Basic Architecture
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Overview

© CoBFs

@ Update and Read operations
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Write/Update operation

@ Block Division: splits a f into blocks based on its contents, using
rabin fingerprints.

Beggining of the file:

Skip Min

(min block size)

Max Boundary
(max block size)

———
window
size

fingerprint *= prime
fingerprint += cn No
fingerprint -= previous_ch

~———>  Shiftone Byte

it fingerprint % average block size == prime

or
block size > max block size

s l

fingerprint = Boundary

M. O. Rabin, “Fingerprinting by random polynomials,” Center for Research in Computing Techn., Aiken Computation
Laboratory, Univ., no. TR-15-81. pp. 15-18, 1981.
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@ Block Matching: Use a string matching algorithm to find the
differences between the new hashes and the old hashes in the form of
the statuses: (i) equality, (if) modified, (iii) inserted, (iv) deleted.

@ Block Updates:
(i) equality, i.e. hash; = hash(b;) = Di=D(bj)
(if) modified = an update is performed to modify the D(b;) to D;
(iii) inserted = an update is performed to create the new blocks
(iv) deleted = is treated as a modification that sets an empty value

Black,P.:Ratcliff pattern recognition.Dictionary of Algorithms and Data Structures(2021)
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Read operation

Block 0 Block 1 Block 2
(Genesis Block) (Last Block)
next: Block 1 next: Block 2 next: Mull
filename ... | Hash.. | __Hash ... |
Empty Data Data Data

E T Ed

Read Optimization in DSMM: In the first phase, if a server has a
smaller tag than the reader, it replies only with its tag. The reader
performs the second phase only when it has a smaller tag than the one
found in the first phase.
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© CoBFs

e ARES
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ARES : Adaptive , Reconfigurable , Erasure coded ,

Atomic Storage

@ ARES is composed of three main components:

e a reconfiguration protocol

e a read/write protocol
e a set of data access primitives (DAPs): ABD, EC

!Nicolaou, N., Cadambe, V., Prakash, N., Trigeorgi, A. et al. (2021). ARES :
Adaptive , Reconfigurable , Erasure coded , Atomic Storage, 1(1):
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ARES : Adaptive , Reconfigurable , Erasure coded ,

Atomic Storage

@ ARES is composed of three main components:

e a reconfiguration protocol

e a read/write protocol
e a set of data access primitives (DAPs): ABD, EC

@ Reconfiguration service:
o mask hosts failures by adding/removing servers
o switching between storage algorithms (DAPs)

!Nicolaou, N., Cadambe, V., Prakash, N., Trigeorgi, A. et al. (2021). ARES :
Adaptive , Reconfigurable , Erasure coded , Atomic Storage, 1(1):
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Erasure-Coded (EC) approaches

Encoding

data disks

parity disks

=>B850588 0 888

Calculate parity blocks

Decoding

reassemble data

OROX gJeo8=>

Reconstruct failed blocks

Original
Data

(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers

BUT reads and writes are still applied on
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Write operation / Distributed Shared Memory Module
Fragmentation Module

[ Block Identification

// N
Roling Hash ( Distributed Shared Memory \

Encoding

Block Hash
Sequence
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Block Updates
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Calculate party blocks
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Figure: Read operation
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How we Run an Experiment

There are two main steps to run an experiment:

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/
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How we Run an Experime

There are two main steps to run an experiment:

e booting up the Client Nodes (either writer or reader) and the Server
Nodes in an emulation testbed (Emulab) or an overlay testbed (AWS)
e executing each scenario using Ansible Playbooks.

Emulab: a network testbed with tunable and controlled
environmental parameters.

AMAZON Web Services (AWS) EC2: a web service that provides
scalability and performance. amazon’Ecz

webservices™

Ansible: a tool to automate different IT tasks. e

ANSIBLE

Emulab network testbed: https://www.emulab.net/
Ansible: https://www.ansible.com/overview/how-ansible-works/
AWS EC2: https://aws.amazon.com/ec2/
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Ansible
Playbook

h
YML
E Get pushed to target servers.
====1 Do their work and get removed.
g

Control machine
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To access a VM node through ssh, it needs a public IP!
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To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!
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To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server
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To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server

@ Increase the limit of the number of ssh connections on the

proxy server (update the file " /etc/ssh/sshd_config")

Andria Trigeorgi Implementation and Experiments COLLABORATE
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AWS Global Map
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Overview

e Evaluation
@ CoBFS VS. CoOABD - Emulab testbed
@ ARES - Emulab testbed
@ all algorithms - AWS testbed
@ all algorithms - Emulab testbed
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Overview

e Evaluation
@ CoBFS VS. CoABD - Emulab testbed
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Types of Scenarios:

o Performance VS. Scalability: examine performance as the number
of service participants increases

o Performance VS. File Size: examine performance when using
different initial file sizes

o Performance VS. Block Size: examine performance under different
block sizes (COBF'S only)
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Scalability results for algorithms COABD and CoBFS

UptateOperation Laency (s vs # ofWiers: Uptat Opraion Ltency <) s ¥ of S Read Operatio atecy e v # o Reades
wint4, int4, updates:20, #reads:20, #Servers:10, #Readers:10,inital flesize:16KB, wint:4, 4, Supdates:20, #reads 20, #inters 10, #Readers: ll iniil filesize:18KB, wint4, it:4, Supdates:20, #reads 20, #Senvers:10, #Wirites:10, inital flesize: 1648,
maxBlockSize 64K, minBlockSize: KB, avgBlockSize:BKB N maxBlockSize 64K, minBlockSize: KB, avgBlockSize:BKB N maxBlockSize:S4KB, minBlockSize: KB, avgBlockSize:KB
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@ As each writer has to update only the affected blocks, the update operation latency in
COBFS is always smaller

@ Concurrency: As the number of writers increases (hence concurrency), the number of
unsuccessful updates in COABD is greater.

@ the higher successful ratio in COBFS provides more data and hence COBF'S read is slower
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File Size results for

algorithms COABD and CoBFS
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@ the update latency of COBF'S remains at extremely low levels, although the file size

increases.

@ a read optimization decreases significantly the COBF'S read latency, since it is more
probable for a reader to already have the last version of some blocks.
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Block Size results for COBF'S algorithm

Reac Operation Latency (sec] vs Min/Avg Block Size (2 B}
wint:d, rint:4, £updates:20, £reads:20, #Servers:10, #Wiriters:10, #Readers:10, initial filesize:13KB,
maxBlockSize:54KB

Update Operation Latency (sec) vs Min/Avg Black Size (2 B}
wint:¢, rint:d4, #updates:2C, #reacs:20, £Servers:10, £Writers:10, #Reacers:10, initial_filesize: 18KB,
maxBlockSize 64KB

10 100 10
. CoBFS latency CoBFS update success ratio A - CoBFS latency
\
initial - final # of blocks % S \_\
9740 H .
4347 3 \
3179 g5
=3 0 g 505 \
3 3 \
i3 \
4 = %
125 i X
123 03 504 N

[ N

° N,

H N

b4 “o2- .
.
————
0.0 0.0
10 n 2 3 1 15 15 10 n vl 13 1 15 16
MinjAvg Block Size (2B} Min/Avg Block Size (2% B}

@ further increase of bsj,e forces the decrease of the COBF'S latencies

@ Concurrency: with a larger number of blocks, the probability of two writes to collide
decreases. = better success rate
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Overview

e Evaluation

@ ARES - Emulab testbed
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Types of Scenarios:

o Performance VS. File Size: evaluate how the read and write
latencies are affected by the size of the shared object.

o Performance VS. Scalability of Readers: compare the read and
write latency of the system with two different storage algorithms,
while the readers increase.

e Changing Reconfigurations (Emulab): In this scenario, we evaluate
how the read and write latencies are affected when increasing the
number of readers, while also changing the storage algorithm.

e Performance VS.k (EC only): examine the read and write latencies
with different numbers of k (parameter of Reed-Solomon)
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File Size results for ARES algorithm

Operation Latency (sec) vs Initial File Size (2 B)
. wint:2, rint:2, #writes:50, #reads:€0, #Servers:10, #Writers:5, #Readers:5

Viite Operation Latency of £C /f
- Read Operation Latency of EC J
Virite Operation Latency of ABD /
= Read Operation Latency of ABD /
95~ !
)
=
g
H
3
g3
2
4
§
&2
1-
P -
2 Py 2 B % > 2% 7

Initial File Size (2 B}

@ the read and write latencies of both storage algorithms remain in low levels until 16 MB
the write operation of EC algorithm is the faster

@ the larger messages sent by ABD result in slower read operations
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Reader Scalability results for ARES algorithm

Operation Latency (sec) vs # of Readers
wint:2, rint:2, recor|nt:13, #writes:60, #reads:60, #reconfigs:6, #Servers:10, #\riters:5, #Recons:1
7

\Vrite Operation Latency of EC

—e~ Read Operation Latency of EC

8] —e— Recon Operation Latency of EC
Write Operation Latency of ABD

=+ Read Operation Latency of ABD
.. Recon Operation Latency of ABD

Operation Latency (sec)

# of Readers

@ the reduced message size of read and write operation in EC keep their latencies lower than

the coresponding latencies of ABD
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Changing Reconfigurations results for ARES algorithm

Operation Latency (sec] vs # of Reagers Operation Latency {sec) vs # of Readers
\.IntZ rint:2, reconint:15, #wirites:60, #veads .30, #recorfigs:5, #Servers:10, #Writers:5, #Recons:1, filzsize:¢MB Mntl rint:2, reconint: 13, #writes:50, #reads:60, #reconfigs:6, #Servers:10, #Wiriters:5, #Recons:1, flesize:4MB
Write Operation Latency of EC \rite Operation Latency of £C
6 4~ Read Operation Latency of EC N 4 Read Operation Latency of EC
Write Operation Latency of ABD ° Writs Operation Latency of ABD
=+ Read Operation Latency of ABD = Read Operation Latency of ABD
75 &+ Recon Operation Latency 75 & Recon Operation Latency
& ¢
4 4
24 £
g i
g 5
it / 3
£ A / g
g N / @
51 A SN §2
RN 2 ¢
< “een X
1 e e !
PR
i g et
U] 0 0 ] 50 .. 0 0 kU] 4 50
# of Reaters ( 1 ) # of Readers

(i) the reconfigurer chooses randomly between the two storage algorithms
(ii) the reconfigurer switches between the two storage algorithms

our choice of k (=parity servers) minimizes the coded fragment size but introduces bigger
quorums and thus larger communication overhead. = in smaller file sizes, the ARES may
not benefit so much from the coding

the reconfiguration delays is higher than the delays of all other operations.
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k Scalability results for ARES algorithm

Operation Latency (sec] vs k

10 WINE2, 12, #nrites:60, #reads:60, #Servers:10, #Wiitars:S, #Readers:S, ilsize:4MB

Vurite Operation Latency of EC
—e— Read Operation Latency of EC
08
H
a2
305
E]
3
g 04-
i
3
2
9
02-
0.0 T T T T

small k (=smaller number of data fragments) = bigger sizes of the fragments and higher
redundancy.

@ The write latency seems to be less affected by the number of k since the encoding is
considerably faster as it requires less computation.
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Overview

e Evaluation

@ all algorithms - AWS testbed
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Types of Scenarios:

o Performance VS. Initial File Sizes: examine performance when
using different initial file sizes

o Performance VS. Scalability of nodes under concurrency:
examine performance as the number of service participants increases

|R| and |W]: [5, 10,15, 20, 25], |S]: [3, 5, 7, 9, 11].

parities: [1, 2, 3, 4, 5]

the clients and servers are distributed in a round-robin fashion.

we calculate all possible combinations of readers, writers and servers

where the number of readers or writers is kept to 5.

o Performance VS. Block Sizes: examine performance under
different block sizes (only for algorithms use the FM module)
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File Size results
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the update latency of fragmented algorithms achieve significantly smaller write latency,
when the file size increases.

the Bl computation latency contributes significantly to the increase of fragmented
algorithms’ update latency.
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File Size results

MinBlock Size: 51248, Avg Block ize:§1248, Max Block Size: M8 ‘Algorithm: ARES_ CoABD-F,in Bloc Sze: 51248, Avg Block Size: 51248, Max Bleck Size: 148
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@ the read latency of CoABD-F is much smaller than of COABD.

@ the ARES-F client has a stable overhead (read-config) for each block request of file
update operation.
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Scalability Results

InitiaFile Size: 4118, Minjug lock ize: 512K, Mex Block ize: M, #Servers 5, SReaders § ! Initial Fie Size: 4M, Min/Avg Block Size: 512kB, MaxEBlock Sze: M, #5ervers: 11, #Readers: 5

- 8PES CoMRE
o S CHEDF

5 o 89ES CC

- RS COECE

= 3D

o CADE

+ GMDF

WRITE Gperation Latency per flle (sec)

@ the write latency of ARESCOEC is the lowest among non-fragmented algorithms because
of the striping level.

@ the ARES client has a stable overhead (read-config) for each block request.

@ the fragmented algorithms perform significantly better write latency.

ria Trigeorgi ation and Experiments COLLABORATE



Scalability Results
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due to the block allocation strategy in fragment algorithms,
written = slower ARES read operation

I s g ki 08 i R s 5 e
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.

s

more data are successfully

the file size in non-fragmented algorithms stays almost unchanged as the number of
servers increases since the cross marks are not widely spread.
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Min/Avg Block Sizes results

InialFle Size: 4MB, Max Block Siz: 1MB ! InitialFie Size: 4NB, Max Block ize: M

o HES CLEDF ¢ o S CMEDF
o A COECE " o MBS COECF
D " e Co0E

READ Operation Latency per File (sec)

Hirvavg 3ocksiz 6) Minitig 3occsize )

@ larger min/avg block sizes are used = the update latency reaches its highest values since
larger blocks need to be transferred.

@ too small min/avg block sizes = more new blocks during update operations = more
update block operations, and hence slightly higher update latency.

@ smaller block sizes = more read block operations to obtain the file's value.

ria Trigeorgi ation and Experiments COLLABORATE



Min/Avg/Max Block Sizes' results

' il Sae 5208 ' (LR ' it et
| Loan )
W
i
o o H
{ i i
N tu
¢ R é
i i i
N ; S A =
: f 3
L) Y, i A
i i
ey, - i
i \ v i 7
B d i ¥ ot H
Lo / ¢ ! ; |
i I <1 o
N » . i . i v
. N -
+ N i
" e . o C - . v
i v
Criey . [ RN o i
g e S HrgR 3 s

@ all the algorithms achieve the maximal update latency as the block size gets larger.

@ a larger block needs more time to be updated in the shared memory level.

ation and Experiments COLLABORATE
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Overview

e Evaluation

@ all algorithms - Emulab testbed
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Types of Scenarios:

o Performance VS. Initial File Sizes: examine performance when
using different initial file sizes

o Performance VS. Scalability of nodes under concurrency:
examine performance as the number of service participants increases

o Performance VS. Block Sizes: examine performance under
different block sizes (only for algorithms use the FM module)

e Changing Reconfigurations: In this scenario, we evaluate how the
read and write latencies are affected when increasing the number of
readers/writers, while changing the storage algorithm and the
reconfigurer chooses randomly the number of servers between [3, 5, 7,
9, 11].

parities: 3 servers: 1, 5 servers: 2, 7 servers: 3, 9 servers: 4, 11 servers: 5
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File Size results
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only Fragmented Algorithms

@ the update latency of fragmented algorithms remains at extremely low levels, although the
file size increases.

@ successful file updates achieved by fragmented algorithms are significantly higher (the
probability of two writes to collide on a single block decreases as the file size increases)
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File Size results
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@ the fragmented algorithms has lower read latency.
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Scalability Results
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Scalability Results
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Min/Avg Block Sizes results
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Min/Avg/Max Block Sizes'
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Changing Reconfigurations results - Non Fragmented
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Changing Reconfigurations results

Fragmented ARES
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Overview

© Conclusions

Andria Trigeorgi Implementation and Experiments COLLABORATE



Trade-offs and Conclusions

Block size of FM. trade-off between smaller blocks in order to improve
the concurrency and the cost of reading these blocks.

Parity of EC. trade-off between operation latency and fault-tolerance in
the system: the further increase of the parity (and thus higher
fault-tolerance) the larger the latency.

Our algorithm, COBF'S , has the following advantages:
@ High Concurrent accesses
@ Strong consistency
o Large file sizes (tested up to 1GB file)
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Thanks for your attention! Any questions?
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Overview

@ Challenges for Distributed Shared Storage Systems
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Challenges for Distributed Shared Storage Systems

Data scalability

Data survivability + System availability — Data replication
Storage efficiency

Communication overhead

Concurrent access

Consistency Semantics

Linearizability: if top1 < top2, then the opl must occur before op2
in the sequence seen by all processes.

S WRITE READ )
‘Q <« —— ‘g
N N

Replication @ T T
@ FOO.TXT Availability Consistency

FOO.TXT

M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent Objects,” ACM Trans._Program. Lang.
Syst., vol. 12, no. 3, pp. 463-492, 1990.
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Fragmented Linearizability

updat:(bn, 0;) , update(bs, Dy)
update(b,, Dy) update(®r, [:1')
.
* time
time read(Dy’, D)
.
read (D7, D) :
— % read(DO')y, read(D1)y;
read(Dy, Dy} ) .
N read(Dy, Dy); N read(D0), read(D1')y
*
(a) Linearizability on the whole object (b) Fragmented Linearizability

Fragmented Linearizability guarantees that all concurrent operations on different

blocks prevail, and only concurrent operations on the same blocks are conflicting.

read1({Dg, Dy} readi — read2
— o
time
————
read2(Dg, Dy', Dp)
—e

M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition for Concurrent’Objects,” ACM Trans. Program=Lang:
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Versioning - Coverability

cvr-write(ver0) => veri
—
fime N
— —
cvr-write(ver0) => fall - ~
=> propagate ver1 cvr-write(ver!) =>ver2

Coverability guarantees that an update succeeds when the writer has the latest

version of the object before updating it. Otherwise, an update becomes a read.

The selected emulation to ensure consistency in our system is the coverable
version of MWMR ABD (CoABD).

C. G. Nicolas Nicolaou, Antonio Ferndndez Anta, “Cover-ability: Consistent versioning in asynchronous, fail-prone,
message-passing environments.”
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Overview

@ Steps on Emulab
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An experiment on Emulab

A‘ 3 Node Types

;/ writer w € W: a client that dispatches write requests to servers.

i reader r € R: a client that dispatches read requests to servers.

server s € S :listens for requests & maintains the object replicas.

@g Performance metric

Operation latency: the time it takes for a write/read operation to
complete (from the client’s point of view)

EE Scenario

examine the operation latency as the number of writers increases.

|W/| in the set {5, 10, 15,20, 25, 30, 35, 40, 45,50}
[R[,|S| =10
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Create Profile - Upload a in Python

Create Profile

Name @ Project Collaborate

Upload File ) | Create Topology [l Edit Code RS

Source code ©

geni-lib script

=
£=2 IO
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Hardware & Software

a routable control ip on the Proxy Server

Parameters:

0S: '"UBUNTU 18.04"

Hardware Type: d710 with two 2.4 GHz
64-bit 8-Core E5-2630 "Haswell”
processors and 64 GB RAM.

et
o
SNt "‘ :
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Tunable Parameters

Default Traffic shaping parameters
100Mb bandwidth on VMs, and no delay or packet loss.

User-specified parameters

Current Usage: 0 Node Hours, , Prev Month: 88 (30 day rank: 321 of 414 users) @

This profile is parameterized; please make your selections below, [FEECTEPIEIRINE Defaults Last History
and then click Next.

4 Show All Parameter Help
Number of Users' Nodes @ 60
Number of Servers' Nodes © 10

f parameter @

Optional physical node type d710
(d710, etc)
Select OS image o UBUNTU18-64-STD
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To access a VM node through ssh, it needs a public IP!
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To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!
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To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server
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To access a VM node through ssh, it needs a public IP!

A Routable IPs are a limited resource!

IL_|
—_

Ansible - Control machine Proxy Server

@ Increase the limit of the number of ssh connections on the

proxy server (update the file " /etc/ssh/sshd_config")
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Overview

@ Execute the Scenarios using Ansible
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Create a file with the remote hosts

serverl.emulabTestl.collaborate.emulab.net

server[2:10]

ansible_user=
ansible_port=
ansible_ssh_common_args=

daemon [1:50]

ansible_user=
ansible_port=
ansible_ssh_common_args=

daemon [51:6@]

ansible_user=
ansible_port=
ansible_ssh_common_args=

Andria Trigeorgi

Implementation and Experiments

ansible_user=

COLLABORATE
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Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ﬂ
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Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,7

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. i
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Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,//

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. i

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O
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Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,//

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. i

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O

Playbook 4: Wait until the shell command of previous phase is

completed for all clients.
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Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,7

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. ﬁ

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O

Playbook 4: Wait until the shell command of previous phase is
completed for all clients.

Playbook 5: Execute a read operation to read the final file. i

Andria Trigeorgi Implementation and Experiments COLLABORATE



Playbooks in Sequence

Playbook 1: Stop and Start all the nodes again with the new

parameters. ,7

Playbook 2: Run the Baseline phase where all the nodes will be
notified of the file. ﬁ

Playbook 3: Readers and writers run a specific number of

operations. ;/ i O

Playbook 4: Wait until the shell command of previous phase is
completed for all clients.

Playbook 5: Execute a read operation to read the final file. i

Playbook 6: Fetch logs.
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