
research@algolysis.comwww.algolysis.com research@algolysis.com

Let’s Work Together:
Building a Robust, Consistent, and Efficient Distributed Shared
Storage System for Large Data Objects that Promotes Collaboration

Presented by: Nicolas Nicolaou
This work is supported by the Cyprus Research and Innovation Foundation under the grant agreement POSTDOC/0916/0090.

9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

In a nutshell!

9/6/20212

§Distributed Storage – Problem Statement

§Fragmentation: How to handle Large Objects
§ Blocks
§ Erasure Coding
§Hybrid Solutions

§Reconfiguration: dealing with failures

§DriveNest: a service to predict imminent node failures

research@algolysis.comwww.algolysis.com research@algolysis.com

What is a Distributed Storage System?
§How to share data robustly in a message-passing system?

3 9/6/2021

Commercial Solutions:
• Cannot provide “sufficient guarantees” when shared objects are accesses concurrently
• Often rely on centralized solutions to enable collaboration
• Not offering “suitable guarantees” for application design

research@algolysis.comwww.algolysis.com research@algolysis.com

What is a Distributed Storage System
§How to share data robustly in a message-passing system?

4 9/6/2021

FooWriter Clients

write(faa)

write(fee)

Reader Clients

read(faa)

read(foo)

Single Server Architecture

Pros:
• Easy to implement
• Strong consistency as the single server

imposes the order of operations

Cons:
• Performance Bottleneck
• Single Point of Failure

research@algolysis.comwww.algolysis.com research@algolysis.com

What is a Distributed Storage System
§How to share data robustly in a message-passing system?

5 9/6/2021

Writer Clients

write(faa)

write(fee)

Reader Clients

read(faa)

read(foo)

Redundancy

Foo

Foo

Foo

Shared read/write storage object

Implementing a fault-tolerant
shared storage object in an
asynchronous, message-passing
environment:
• Availability + Survivability

=> use redundancy

• Asynchrony + Redundancy
=> concurrent operations

• Behavior of concurrent
operations
=> consistency semantics
- Safety, Regularity, Atomicity

[Lamport86]

research@algolysis.comwww.algolysis.com research@algolysis.com

Atomicity/Linearizability

• Provides the illusion that operations happen in a sequential order
- a read returns the value of the preceding write
- a read returns a value at least as recent as that returned by any

preceding read

Writes

Read 1

Read 2

Read 3

*

*

*

*

time

6 9/6/2021

HERLIHY, M. P., AND WING, J. M.
Linearizability: a correctness condition for
concurrent objects. ACM Transactions on
Programming Languages and Systems 12,
3 (1990), 463–492.

research@algolysis.comwww.algolysis.com research@algolysis.com

A Simple Solution - ABD
§Attiya, Bar-Noy,

Dolev: an elegant,
intuitive solution
§Use the power of the

majority
§ Assign logical

timestamps to written
values

§Wait-free solution

7 9/6/2021

Foo, 0

Faa, 1

Faa,1

write(faa, 1)

write(faa, 1)
read()

read()

Faa, 1

write(faa, 1)

read(faa, 1)

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124–142.

research@algolysis.comwww.algolysis.com research@algolysis.com

A Simple Solution - ABD
§A “read” needs to

“write”
§ Phase 1: query
§ Phase 2: propagate

8 9/6/2021

Foo, 0

Faa, 1

Foo,0

write(faa)
read1()

Faa, 1

write(faa, 1)

read1(faa, 1)

read2()

read2(???)

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124–142.

research@algolysis.comwww.algolysis.com research@algolysis.com

A Simple Solution - ABD

9 9/6/2021

Faa, 1

Faa, 1

Foo,0

write(faa)
read1()

Faa, 1
write(faa, 1)

read1(faa, 1)

read2()

read2(faa, 1)

Faa, 1

*

* *
ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124–142.

§A “read” needs to
“write”
§ Phase 1: query
§ Phase 2: propagate

research@algolysis.comwww.algolysis.com research@algolysis.com

Solutions for Large Objects
§ABD efficient for small objects

§ Each write operation sends (S/2)+1 copies of the object
§ Each read operation sends S copies of the object

§Moreover concurrent write operations may overwrite one another
§ Unbale to handle write operations working on different parts of a large object

10 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

Main Project Goal

Develop practical and robust DSS in the message-passing,
asynchronous, environment while allowing high concurrency and

preserving strong consistency.

11 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Fragmentation
§Most intuitive solution

§ Split large objects into smaller fragments
§ Treat each individual block as an atomic object

12 9/6/2021

servers

object

b1 b2

blocks

blocks bk

f

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Algorithm CoBFS

§Fragmented Objects:
§ Connected list of blocks
§ Each block points to the next block

§Write Operation write(f)
§ Propagate only modified and new blocks

§Read Operation read(f)
§ Start from genesis block and read all the blocks
§Optimization: Only blocks that have changed are send to the read

13 9/6/2021

b1 b2 bkbg

f

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Algorithm CoBFS

§Write/Update Operation:
§ Run fragmentation and block matching algorithms to determine

§ Modified blocks
§ New blocks

§ Case 1: Only a single block has changed

§ Case 2: Changed block overflowed and new blocks introduced

14 9/6/2021

b1 b2bgf write(b1)

b1 𝑏!! b2bgf write(𝑏!")𝑏!" write(𝑏!!) write(b1)

time

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Basic Architecture

15 9/6/2021

Rabin, M O. Fingerprinting by random polynomials, Center for Research in Computing Techn., Aiken Computation Laboratory, Univ. , pp 15—18, 1981

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Experimental Results - Scalability

16 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Experimental Results - Filesize

17 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Experimental Results – Read Optimization

18 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Experimental Results – Block Size

19 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

servers

vkv1 v2 v3

value

codeword

recovered value
any k coded elements can be used to decode

cnc1 c2

Encode

vkv1 v2 v3

can tolerate
any (n – k) missing

elements

decode

Solution 2: Erasure Coding ([n, k] MDS Codes)

7/7/201920/28ICDCS 2019

coded elements

fragments

ck

f
Singleton, R.C. (1964), "Maximum distance q-
nary codes", IEEE Trans. Inf. Theory, 10 (2):
116–118, doi:10.1109/TIT.1964.1053661

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTIT.1964.1053661

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 2: Erasure Coding vs Replication

21 9/6/2021

A well-designed algorithm has great potential to reduce storage and
communication costs while using erasure codes

𝑐! 𝑐# 𝑐!

𝑐"

𝑐#𝑐! 𝑐$

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 2: Algorithm CoEC

§Write Operation write(f)
§ Apply erassure coding on f
§ Send code ci to server si

§Read Operation read(f)
§ Collect k codes from the servers
§ Decode and return the value of f

§Ensures Strong Consistency

§Does not prevent overwriting

22 9/6/2021

c1 c2 cn

f

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 2: Erasure Coding Architecture

23 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 2: Experimental Results

24 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 3: Hybrid

25 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

What happens when things go wrong?
§Tolerate minority of failures

§What if more than minority fail?

§Replace failed with healthy servers => Reconfiguration

26 9/6/2021

Challenge: Can we install a new configuration without stopping the
service and without violating linearizability?

research@algolysis.comwww.algolysis.com research@algolysis.com

Re-Configuration Operation

9/6/202127

§Change the configuration parameters (add/replace servers)
§Due to failures
§Due to admin maintenance

S1

S2

S3

S1

S2

S5

S4

X

Reconfig()

c1 c2

LYNCH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable atomic memory service for dynamic networks. In Proceedings of
16th International Symposium on Distributed Computing (DISC) (2002), pp. 173–190.

research@algolysis.comwww.algolysis.com research@algolysis.com

ARES: A modular and adaptive reconfiguration protocol

• Read/Write operations are not aware
of the underlying shared memory
implementation
• They are using the same access primitives

Modular

• Different shared memory algortihm
may be used in every configuration
• Satisfying application demands

Adaptive

28 9/6/2021

NICOLAOU, N., CADAMBE, V., KONWAR, K., PRAKASH, N., LYNCH, N., AND MEDARD, M. ARES: Adaptive, Reconfigurable,Erasure
Coded, Atomic Storage. In Proc. of ICDCS, pp. 2195–2205 (2018)

research@algolysis.comwww.algolysis.com research@algolysis.com

Configuration Sequence

9/6/202129

§Global configuration sequence GL

§Flags {P, F}: pending, finalized
§ Pending: not yet a majority of servers received msgs
§ Finalized: new configuration propagated to a majority of servers

§nextC: each server points to the next configuration
§ Same nextC to all servers of a single config c (due to consensus)

⏊c0

CN0 Q0

nextC =(c1, F)

c1

CN1 Q1

nextC =(c2, P)

c2

CN2 Q2

nextC =(,)⏊ ⏊

research@algolysis.comwww.algolysis.com research@algolysis.com

Reconfiguration Service

7/7/201930

§A recon operation performs 2 major steps:
1) Configuration Sequence Traversal
2) Configuration Installation

§ Transfers the object state from the old to the new configuration

attempt get to the latest configuration
introduce the new configuration
migrate the data to the new config
let servers know it is good to be finalized

(1)

(2)

research@algolysis.comwww.algolysis.com research@algolysis.com

Reconfiguration Service Guarantees

7/7/201931

For any two reconfig ops π1, π2 s.t. π1 before π2
• Configuration Consistency

• Sequence Prefix

• Sequence Progress

π1 c0 c1 c2 …

π2 c0 c1 c2 …

π1 c0 c1

π2 c0 c1 c2

π2 <c0, F> <c1, P> <c2, , F> …

π1 <c0, F> <c1, P> <c2, P>

research@algolysis.comwww.algolysis.com research@algolysis.com

ARES: Experimental Results

32 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

When shall we reconfigure?
§Frequent reconfigurations => Slow Down the service

§ Infrequent reconfigurations => May make the service anavailable

33 9/6/2021

Challenge: How can we determine when is the best time to
reconfigure?

research@algolysis.comwww.algolysis.com research@algolysis.com

DriveNest: Monitoring Node Health
§ Crowdsourcing Platform

§ Collects data from diverse setups, locations,
conditions.

§ Monitor storage device health by collecting
S.M.A.R.T data

§ Predict soon-to-fail drives
§ Prediction performance relies on the report of

failed drives

§ Integration with ARES
§ Initiate recon operation to remove drives that

are predicted to fail
§ Replace them with healthy nodes and migrate

data

34 9/6/2021

www.drivenest.com

research@algolysis.comwww.algolysis.com research@algolysis.com

Drivenest: Architecture
§DriveBird: Data Collection

Clients
§Web platform: View your

drives
§Prediction Engine: Applies

a number of machine
learning/ deep learning
algorithms to predict
soon-to-fail drives

35 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

DriveNest: DriveBird Client
§Production Submission Clients

§ Python (cross platform)

§Development Submission Clients
§GUI interface for all platforms
§ Tested up to Win 10 and MacOS

Sierra

36 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

DriveNest: Web Platform

Short Demo

37 9/6/2021

research@algolysis.comwww.algolysis.com research@algolysis.com

DriveNest: Status
§Drivenest Collection Clients: Alpha Testing

§Drivenest Web Platform: Alpha Testing

§Drivenest Predictions: Development Stage

38 9/6/2021

Feel free to register and give the service a test “drive”. J

We would be glad to hear your feedback

research@algolysis.comwww.algolysis.com research@algolysis.com

COLLABORATE: Overall Architecture

research@algolysis.comwww.algolysis.com research@algolysis.com

COLLABORATE: What’s ahead
§Complete the prediction algorithms to be used in DriveNest

§Complete the integration of DriveNest with the Shared Storage
algorithms

§Deploy the algorithms on real systems (AWS, Rpis)
§ Collect and Analyse the data

§Embedd the developed algorithms in a production level Distributed
Storage Service!

www.algolysis.com research@algolysis.com

Thank you!

research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Fragmented Linearizability

42 9/6/2021

Fragmented Linearizability: all concurrent operations on different blocks
prevail, and only concurrent operations on the same blocks are conflicting.

