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In a nutshell!

9/6/20212

§Distributed Storage – Problem Statement

§Fragmentation: How to handle Large Objects
§ Blocks 
§ Erasure Coding
§Hybrid Solutions

§Reconfiguration: dealing with failures

§DriveNest: a service to predict imminent node failures



research@algolysis.comwww.algolysis.com research@algolysis.com

What is a Distributed Storage System?
§How to share data robustly in a message-passing system?
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Commercial Solutions:
• Cannot provide “sufficient guarantees” when shared objects are accesses concurrently
• Often rely on centralized solutions to enable collaboration
• Not offering “suitable guarantees” for application design
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What is a Distributed Storage System
§How to share data robustly in a message-passing system?
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FooWriter Clients

write(faa)

write(fee)

Reader Clients

read(faa)

read(foo)

Single Server Architecture

Pros: 
• Easy to implement
• Strong consistency as the single server 

imposes the order of operations 

Cons: 
• Performance Bottleneck
• Single Point of Failure 
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What is a Distributed Storage System
§How to share data robustly in a message-passing system?
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Writer Clients

write(faa)

write(fee)

Reader Clients

read(faa)

read(foo)

Redundancy

Foo

Foo

Foo

Shared read/write storage object

Implementing a fault-tolerant 
shared storage object in an 
asynchronous,  message-passing 
environment: 
• Availability + Survivability 

=> use redundancy

• Asynchrony + Redundancy 
=> concurrent operations

• Behavior of concurrent 
operations 
=> consistency semantics
- Safety, Regularity, Atomicity 

[Lamport86]
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Atomicity/Linearizability

• Provides the illusion that operations happen in a sequential order
- a read returns the value of the preceding write
- a read returns a value at least as recent as that returned by any 

preceding read

Writes

Read 1

Read 2

Read 3

*

*

*

*

time
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HERLIHY, M. P., AND WING, J. M. 
Linearizability: a correctness condition for 
concurrent objects. ACM Transactions on 
Programming Languages and Systems 12, 
3 (1990), 463–492.
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A Simple Solution - ABD
§Attiya, Bar-Noy, 

Dolev:  an elegant, 
intuitive solution
§Use the power of the 

majority 
§ Assign logical 

timestamps to written 
values

§Wait-free solution
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Foo, 0

Faa, 1

Faa,1

write(faa, 1)

write(faa, 1)
read()

read()

Faa, 1 

write(faa, 1)

read(faa, 1)

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124–142.
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A Simple Solution - ABD
§A “read” needs to 

“write”
§ Phase 1: query
§ Phase 2: propagate
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Foo, 0

Faa, 1

Foo,0

write(faa)
read1()

Faa, 1 

write(faa, 1)

read1(faa, 1)

read2()

read2(???)

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124–142.
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A Simple Solution - ABD
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Faa, 1

Faa, 1

Foo,0

write(faa)
read1()

Faa, 1 
write(faa, 1)

read1(faa, 1)

read2()

read2(faa, 1)

Faa, 1 

*

* *
ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124–142.

§A “read” needs to 
“write”
§ Phase 1: query
§ Phase 2: propagate
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Solutions for Large Objects
§ABD efficient for small objects

§ Each write operation sends (S/2)+1 copies of the object
§ Each read operation sends S copies of the object

§Moreover concurrent write operations may overwrite one another
§ Unbale to handle write operations working on different parts of a large object
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Main Project Goal

Develop practical and robust DSS in the message-passing, 
asynchronous, environment while allowing high concurrency and 

preserving strong consistency.
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Solution 1: Fragmentation
§Most intuitive solution

§ Split large objects into smaller fragments
§ Treat each individual block as an atomic object

12 9/6/2021

servers

object

b1 b2

blocks

blocks bk

f



research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Algorithm CoBFS

§Fragmented Objects: 
§ Connected list of blocks
§ Each block points to the next block

§Write Operation write(f)
§ Propagate only modified and new blocks 

§Read Operation read(f)
§ Start from genesis block and read all the blocks
§Optimization: Only blocks that have changed are send to the read
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b1 b2 bkbg

f
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Solution 1: Algorithm CoBFS

§Write/Update Operation: 
§ Run fragmentation and block matching algorithms to determine

§ Modified blocks
§ New blocks 

§ Case 1: Only a single block has changed

§ Case 2: Changed block overflowed and new blocks introduced
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b1 b2bgf write(b1)

b1 𝑏!! b2bgf write(𝑏!")𝑏!" write(𝑏!!) write(b1)

time
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Solution 1: Basic Architecture
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Rabin, M O. Fingerprinting by random polynomials, Center for Research in Computing Techn., Aiken Computation Laboratory, Univ. , pp 15—18, 1981
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Solution 1: Experimental Results - Scalability
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Solution 1: Experimental Results - Filesize
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Solution 1: Experimental Results – Read Optimization
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Solution 1: Experimental Results – Block Size
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servers

vkv1 v2 v3

value

codeword

recovered value
any k coded elements can be used to decode

cnc1 c2

Encode

vkv1 v2 v3

can tolerate  
any (n – k) missing 

elements

decode

Solution 2: Erasure Coding ([n, k] MDS Codes)

7/7/201920/28ICDCS 2019

coded elements

fragments

ck

f
Singleton, R.C. (1964), "Maximum distance q-
nary codes", IEEE Trans. Inf. Theory, 10 (2): 
116–118, doi:10.1109/TIT.1964.1053661

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTIT.1964.1053661


research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 2: Erasure Coding vs Replication

21 9/6/2021

A well-designed algorithm has great potential to reduce storage and 
communication costs while using erasure codes

𝑐! 𝑐# 𝑐!

𝑐"

𝑐#𝑐! 𝑐$
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Solution 2: Algorithm CoEC

§Write Operation write(f)
§ Apply erassure coding on f
§ Send code ci to server si

§Read Operation read(f)
§ Collect k codes from the servers
§ Decode and return the value of f

§Ensures Strong Consistency

§Does not prevent overwriting
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c1 c2 cn

f
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Solution 2: Erasure Coding Architecture
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Solution 2: Experimental Results
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Solution 3: Hybrid
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What happens when things go wrong? 
§Tolerate minority of failures

§What if more than minority fail?

§Replace failed with healthy servers => Reconfiguration
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Challenge: Can we install a new configuration without stopping the 
service and without violating linearizability?
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Re-Configuration Operation

9/6/202127

§Change the configuration parameters (add/replace servers)
§Due to failures
§Due to admin maintenance

S1

S2

S3

S1

S2

S5

S4

X

Reconfig()

c1 c2

LYNCH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable atomic memory service for dynamic networks. In Proceedings of
16th International Symposium on Distributed Computing (DISC) (2002), pp. 173–190.
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ARES: A modular and adaptive reconfiguration protocol 

• Read/Write operations are not aware 
of the underlying shared memory 
implementation
• They are using the same access primitives

Modular

• Different shared memory algortihm 
may be used in every configuration
• Satisfying application demands

Adaptive

28 9/6/2021

NICOLAOU, N., CADAMBE, V., KONWAR, K., PRAKASH, N., LYNCH, N., AND MEDARD, M. ARES: Adaptive, Reconfigurable,Erasure
Coded, Atomic Storage. In Proc. of ICDCS, pp. 2195–2205 (2018)
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Configuration Sequence
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§Global configuration sequence GL

§Flags {P, F}: pending, finalized
§ Pending: not yet a majority of servers received msgs
§ Finalized: new configuration propagated to a majority of servers

§nextC: each server points to the next configuration
§ Same nextC to all servers of a single config c (due to consensus)

⏊c0

CN0 Q0

nextC =(c1, F)

c1

CN1 Q1

nextC =(c2, P)

c2

CN2 Q2

nextC =(     ,    )⏊ ⏊
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Reconfiguration Service
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§A recon operation performs 2 major steps:
1) Configuration Sequence Traversal
2) Configuration Installation

§ Transfers the object state from the old to the new configuration

attempt get to the latest configuration 
introduce the new configuration 
migrate the data to the new config
let  servers know it is good to be finalized 

(1)

(2)
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Reconfiguration Service Guarantees
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For any two reconfig ops π1, π2 s.t. π1 before π2 
• Configuration Consistency

• Sequence Prefix

• Sequence Progress

π1 c0 c1 c2 …

π2 c0 c1 c2 …

π1 c0 c1

π2 c0 c1 c2

π2 <c0, F> <c1, P> <c2, , F> …

π1 <c0, F> <c1, P> <c2, P>
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ARES: Experimental Results

32 9/6/2021
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When shall we reconfigure?
§Frequent reconfigurations => Slow Down the service

§ Infrequent reconfigurations => May make the service anavailable

33 9/6/2021

Challenge: How can we determine when is the best time to 
reconfigure?
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DriveNest: Monitoring Node Health
§ Crowdsourcing Platform

§ Collects data from diverse setups, locations, 
conditions. 

§ Monitor storage device health by collecting 
S.M.A.R.T data

§ Predict soon-to-fail drives
§ Prediction performance relies on the report of 

failed drives

§ Integration with ARES
§ Initiate recon operation to remove drives that 

are predicted to fail 
§ Replace them with healthy nodes and migrate 

data 
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www.drivenest.com
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Drivenest: Architecture 
§DriveBird: Data Collection 

Clients
§Web platform: View your 

drives
§Prediction Engine: Applies 

a number of machine 
learning/ deep learning 
algorithms to predict 
soon-to-fail drives
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DriveNest: DriveBird Client
§Production Submission Clients

§ Python (cross platform)

§Development Submission Clients
§GUI interface for all platforms 
§ Tested up to Win 10 and MacOS 

Sierra
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DriveNest: Web Platform

Short Demo
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DriveNest: Status
§Drivenest Collection Clients: Alpha Testing

§Drivenest Web Platform: Alpha Testing

§Drivenest Predictions: Development Stage
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Feel free to register and give the service a test “drive”. J

We would be glad to hear your feedback
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COLLABORATE: Overall Architecture
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COLLABORATE: What’s ahead
§Complete the prediction algorithms to be used in DriveNest

§Complete the integration of DriveNest with the Shared Storage 
algorithms

§Deploy the algorithms on real systems (AWS, Rpis)
§ Collect and Analyse the data 

§Embedd the developed algorithms in a production level Distributed 
Storage Service!
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Thank you!



research@algolysis.comwww.algolysis.com research@algolysis.com

Solution 1: Fragmented Linearizability
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Fragmented Linearizability: all concurrent operations on different blocks 
prevail, and only concurrent operations on the same blocks are conflicting.


