OLL/\BOR/\TE

))CONSIST ENT & ROBUST DISTRIBUTED STORAGE

Let’s Work Together:
Building a Robust, Consistent, and Efficient Distributed Shared

Storage System for Large Data Objects that Promotes Collaboration

Presented by: Nicolas Nicolaou
This work is supported by the Cyprus Research and Innovation Foundation under the grant agreement POSTDOC/0916,/0090.

of Cyprus FOUNDATION European Regional N/

. 3 RESEARCH i r
algOIYSIS ‘ A&[’ University I d ea ||| & INNOVATION - European Union \M’,{
A

algorithmic solutions Development Fund Republic of Cyprus

algo'YS's , A www.algolysis.com =4 research@algolysls.com 9/6/2021

algorithmic solutions

In a nutshell!

= Distributed Storage — Problem Statement

" Fragmentation: How to handle Large Objects
= Blocks
= Erasure Coding
= Hybrid Solutions

= Reconfiguration: dealing with failures

=" DriveNest: a service to predict imminent node failures

: A www.algolysis.com =3 research@algolysis.com 9/6/2021

What is a Distributed Storage System?

" How to share data robustly in a message-passing system?

. & :
0} && OneDrive
Dropbox

L oQo

Google Drive Nextcloud -
iCloud
Commercial Solutions:

* Cannot provide “sufficient guarantees” when shared objects are accesses concurrently
* Often rely on centralized solutions to enable collaboration
* Not offering “suitable guarantees” for application design

ig_c_’!ngm A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

What is a Distributed Storage System

" How to share data robustly in a message-passing system?

Single Server Architecture

Writer Clients

o

Reader Clients

read(faa)

\

Pros:

* Easytoimplement Cons:

* Strong consistency as the single server * Performance Bottleneck
imposes the order of operations * Single Point of Failure

ill_g_C_)!_Elj_m A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

What is a Distributed Storage System

" How to share data robustly in a message-passing system?

Redundancy

)
S
S

Implementing a fault-tolerant
shared storage object in an

J as nchronous, message-passin
environment:

 Availability + Survivability

~

Writer Clients Reader Clients => use redundancy
: * Asynchrony + Redundancy
i i W ‘w’ => concurrent operations

00
Behavior of concurrent
Foo

operations
=> consistency semantics
g — Safety, Regularity, Atomicity
\ / [Lamport86]

Shared read/write storage object

il_g_c_’ll_ﬁlf_m A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Atomicity/Linearizability

* Provides the illusion that operations happen in a sequential order
— aread returns the value of the preceding write

— aread returns a value at least as recent as that returned by any
preceding read

U1 (%)

_

Linearizability: a correctness condition for
concurrent objects. ACM Transactions on
U1

d Programming Languages and Systems 12,
Read 1 * 3 (1990), 463-492.

()
Read 2 sk

U2

Read 3

time

19_2')!5'5 : A www.algolysis.com 4 research@algolysis.com 9/6/2021

algorithmic solutions

A Simple Solution - ABD
= Attiya, Bar-Noy,

Dolev: an elegant,
y/ intuitive solution

= Use the power of the
0 majority
= Assign logical

timestamps to written

y |
values

= \Wait-free solution

o

~—

write(faa, 1)

write(faa, 1)

s g

read(faa, 1)

global time ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124-142.

algo'YS's : A www.algolysis.com B3 research@algolysls.com 9/6/2021

ithmic solut

A Simple Solution - ABD

" A “read” needs to
read2() “write”

: = Phase 1: query

= Phase 2: propagate

A

write(faa)

write(faa, 1)

read1(faa, 1) read2(???)

global time ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124-142.

M‘fm A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

A Simple Solution - ABD

" A “read” needs to
read2() “write”

= Phase 1: query

= Phase 2: propagate

A
v

write(faa)

write(faa, 1)

readl(faa, 1) read2(faa, 1)
* *

global time ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly
in message passing systems. Journal of the ACM 42(1) (1996), 124-142.

M‘fm A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Solutions for Large Objects

= ABD efficient for small objects

= Each write operation sends (S/2)+1 copies of the object
= Each read operation sends S copies of the object

=" Moreover concurrent write operations may overwrite one another
= Unbale to handle write operations working on different parts of a large object

——————write(x)

write(y)

write(x) Time o write(y)

il_g_c_’ll_ﬁlf_m A www.algolysis.com B3 research@algolysls.com 9/6/2021

algorithmic solutions

Main Project Goal

Develop practical and robust DSS in the message-passing,
asynchronous, environment while allowing high concurrency and

preserving strong consistency.

ill_g_C_)!_Elj_m A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 1: Fragmentation

= Most intuitive solution

= Split large objects into smaller fragments
= Treat each individual block as an atomic object

object f
blocks b, b, ©°° by
$1 59 Sn

servers

: A www.algolysis.com =3 research@algolysis.com 9/6/2021

Solution 1: Algorithm CoBFS

" Fragmented Objects: f

= Connected list of blocks [bg » by m by 0t by }
= Each block points to the next block

" Write Operation write(f)
= Propagate only modified and new blocks

= Read Operation read(f)
= Start from genesis block and read all the blocks
= Optimization: Only blocks that have changed are send to the read

: A www.algolysis.com =3 research@algolysis.com 9/6/2021

Solution 1: Algorithm CoBFS

= Write/Update Operation:

= Run fragmentation and block matching algorithms to determine
= Modified blocks
= New blocks

= Case 1: Only a single block has changed
f[b, ‘M b 1 ‘ write(b,)

= Case 2: Changed block overflowed and new blocks introduced

f[be —’”’m*’ b? el 1 ‘ write(b?) write(b{) write(b,)

time

: A www.algolysis.com =3 research@algolysis.com 9/6/2021

Solution 1: Basic Architecture

=
AR

Cllonii

Application Layer

g {

~ Fragmentation Module
(& Block ldontmcatlon\

Rolling Hash

¥

Block Hash
Sequence
Matching

b * J

Distributed Shared Memory Module

>
e iy

DSM (‘;Ilemx

|DSSM Operations

Distributed Shared Memory

) =
== ==

a i
Sq Sz

DSM Client,

—

]
N, |

Clloni;

Application Layer

g {

"~ Fragmentation Module
/" Block identification

Rolling Hash
Y

Block Hash
Sequence
Matching

DSSM Operations

Rabin, M O. Fingerprinting by random polynomials, Center for Research in Computing Techn., Aiken Computation Laboratory, Univ. , pp 15—18, 1981

algolysis

A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 1: Experimental Results - Scalability

Update Operation Latency (sec) vs # of Writers
wint:4, rint:4, #updates:20, #reads:20, #Servers:10, #Readers:10, initial filesize:18KB,

maxBlockSize:64KB, minBlockSize:2KB, avgBlockSize:8KB

1.0 100
=+ CoBFS latency CoBFS update success ratio
—e— COoABD latency mmm CoABD update success ratio
g 0.8 - 2-84 - 80
~"’; initial - final # of blocks
O
c
£ 0.6 %° L 60 =
= 3-169 %
o (%]
=1 2-184]
= 2232 5533 9
2 0.4 i 40 &
O - .
o 2-265 3-291 3305
©
2
0.2 - 20
. 'k'*'_ *-f.— *-r-— *-r
0.0 T T . T . T . T 0
10 20 30 40 50

of Writers

19_2'_)!5'5 : A www.algolysis.com 4 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 1: Experimental Results - Filesize

algolysis

algorithmic solutions

Update Operation Latency (sec)

Update Operation Latency (sec) vs Initial File Size (2* B)
wint:4, rint:4, #updates:5, #reads:5, #Servers:5, #Writers:5, #Readers:5,
maxBlockSize:1MB, minBlockSize:512KB, avgBlockSize:512KB

20 : 311-311 T76T-1262] 100
=+ CoBFS latency CoBFS update success ratio 629-629
—e— CoABD latency mmm CoABD update success ratio 159-159
200 4 80-80 L 80
150 - - 60
10-10
initial - final # of blocks
100 1 / 3-3 - 40
1-5 5-5
50 - - 20
0 -~ - ; 0
20 22 24 26 28 30

Initial File Size (2* B)

www.algolysis.com research@algolysis.com

success (%)

9/6/2021

Solution 1: Experimental Results — Read Optimization

Read Operation Latency (sec) vs Initial File Size (2* B)
wint:4, rint:4, #updates:5, #reads:5, #Servers:5, #Writers:5, #Readers:5,
maxBlockSize:1MB, minBlockSize:512KB, avgBlockSize:512KB

250
== CoBFS latency

—e— COABD latency
=>- CoBFS latency with read optimization

. —e— CoABD latency with read optimization

150 -

100 -

Read Operation Latency (sec)

w
o
1

20 21 22 23 24 25 26 27 28 29 30
Initial File Size (2* B)

19_2')!5'5 : A www.algolysis.com 4 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 1: Experimental Results — Block Size

Update Operation Latency (sec) vs Min/Avg Block Size (2* B)
wint:4, rint:4, #updates:20, #reads:20, #Servers:10, #Writers:10, #Readers:10, initial_filesize:18KB,
maxBlockSize:64KB

1.0 100
=+ CoBFS latency CoBFS update success ratio
g 0.8 1 initial - final # of blocks L 30
< 9-740
o 4-347
c
g Bad’° 1-85 —
§ 0.6 - - 60 S
c %]
2 1-38 g
g 1-25 3
§ 0.4 - 1-23 40 @
3
©
2
> 0.2 - - 20
e
0 0 . — *— —x_ * S — q. — — . — * ----- — x 0
' 10 11 12 13 14 15 16

Min/Avg Block Size (2* B)

19_2'_)!5'5 : A www.algolysis.com 4 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 2: Erasure Coding ([n, k] MDS Codes)

Singleton, R.C. (1964), "Maximum distance g-

value i nary codes", IEEE Trans. Inf. Theory, 10 (2):
l 116-118, doi:10.1109/TIT.1964.1053661
fragments ViV V3 0 0 0y
lEncode
codeword Cy c, °°° g o o o Gh
l l coded elements l
S1 59 Sn,
servers ‘ ‘ ’
\ J
|
decode

can tolerate
any (n — k) missing
recovered value Vi V, V3 0 00 elements

any k coded elements can be used to decode g

algorithmic solutions

' L3
ig_gbiii A www.algolysis.com =3 research@algolysis.com 7/7/2019

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTIT.1964.1053661

Solution 2: Erasure Coding vs Replication

Writer

o

Reader -

Writer

A well-designed algorithm has great potential to reduce storage and
communication costs while using erasure codes

M‘fm A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 2: Algorithm CoEC

= Write Operation write(f)
= Apply erassure coding on f
= Send code c;to server s, f

. [Cq C o0 o }
= Read Operation read(f)
= Collect k codes from the servers
" Decode and return the value of f

= Ensures Strong Consistency

= Does not prevent overwriting

: A www.algolysis.com =3 research@algolysis.com 9/6/2021

Solution 2: Erasure Coding Architecture

Distributed Shared Memory Module
. Erasure-Coded Distributed
: Shared Memory '
(—
=]
A—
== ==
0 i
Sq Sz
(] - |
Client, Clieny;
Application Layer ¢=::>-|, &= v’ puny -|§==:> Application Layer
EC-DSM - EC.DSM
Client, Sn Client,
. -

il_g_c_’!.Elf_m A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 2: Experimental Results

Operation Latency (sec) vs Initial File Size (2* B)
wint:2, rint:2, #writes:60, #reads:60, #Servers:10, #Writers:5, #Readers:5

7
Write Operation Latency of EC /-)(
6 —e— Read Operation Latency of EC .
Write Operation Latency of ABD ,/
=+ Read Operation Latency of ABD ./
O 54
[¢}]
“
>
2 4-
(V]
5
S 31
<
()]
S 2-
1 .
0 .

20 21 2 23 24 25 26 27
Initial File Size (2* B)

19_2')!5'5 : A www.algolysis.com 4 research@algolysis.com 9/6/2021

algorithmic solutions

Solution 3: Hybrid

-
Clloni,

Application Layer

g g

~ Fragmentation Module

4 Block ldontmcauon\

Rolling Hash

4

Block Hash

Sequence
Matching
. * /

|

DSSM Operations

algolysis

algorithmic solutions

>0l <

_—
EC-DSM
Client,

Distributed Shared Memory Module
. Erasure-Coded Distributed

|
—
Client

Application Layer

g g

" Fragmentation Module

/" Block Identification

Rolling Hash
L 4
Block Hash
Sequence

Matching

DSSM Operations

A www.algolysis.com

=3 research@algolysis.com

9/6/2021

What happens when things go wrong?

" Tolerate minority of failures

= What if more than minority fail?

= Replace failed with healthy servers => Reconfiguration

P

<

Challenge: Can we install a new configuration without stopping the
service and without violating linearizability?

N

>

A www.algolysis.com =3 research@algolysis.com

9/6/2021

Re-Configuration Operation

= Change the configuration parameters (add/replace servers)
= Due to failures
= Due to admin maintenance

Reconfig()

LYNCH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable atomic memory service for dynamic networks. In Proceedings of
16th International Symposium on Distributed Computing (DISC) (2002), pp. 173-190.

algorithmic solutions

il_g_c_’!.Elf_m A www.algolysis.com =3 research@algolysis.com 9/6/2021

ARES: A modular and adaptive reconfiguration protocol

e Read/Write operations are not aware
of the underlying shared memory
M Od U Ia I implementation

e They are using the same access primitives

e Different shared memory algortihm

Ad a pt|ve may be used in every configuration

e Satisfying application demands

NICOLAOU, N., CADAMBE, V., KONWAR, K., PRAKASH, N., LYNCH, N., AND MEDARD, M. ARES: Adaptive, Reconfigurable,Erasure
Coded, Atomic Storage. In Proc. of ICDCS, pp. 2195-2205 (2018)

algo'YS's IS A www.algolysis.com 1 research@algolysls.com 9/6/2021

ithmic solut

Configuration Sequence

= Global configuration sequence G,

" Flags {P, F}: pending, finalized
" Pending: not yet a majority of servers received msgs
" Finalized: new configuration propagated to a majority of servers

" nextC: each server points to the next configuration
= Same nextC to all servers of a single config c (due to consensus)

__.____>J_

CN, | Q CN; | O CN, Q,
nextC =(c1, F) nextC =(c2, P) nextC=(1 ,1)

i_g_C_)!XEIE_W A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Reconfiguration Service

=" A recon operation performs 2 major steps:
1) Configuration Sequence Traversal

2) Configuration Installation
= Transfers the object state from the old to the new configuration

6: operation reconfig(c)

it ¢ = L then 7

i cseq +—read-config(cseq) attempt get to the latest configuration T (1)
cseq + add-config(eseq, ¢) introduce the new configuration]

10: update-config(cseq) migrate the data to the new config 2
cseq « finalize-config(cseq) let servers know it is good to be finalized |

12: end operation

algorithmic solutions

ill_g_C_)!_Elj_m A www.algolysis.com =3 research@algolysis.com 7/7/2019

Reconfiguration Service Guarantees

For any two reconfig ops 1y, 1, s.t. ity before m,
* Configuration Consistency

LS Co C1 C,

n, Co C1 C,

* Sequence Prefix

LIS Co C1

n, Co C1 1%

* Sequence Progress

T, <Cy, F> <c4, P> <c,, P>

I, <¢y, F> <c,, P> <c, , F>

il_g_c_’ll_ﬁlf_m A www.algolysis.com =3 research@algolysis.com 7/7/2019

algorithmic solutions

ARES: Experimental Results

Operation Latency (sec) vs # of Readers
wlnt:72, rint:2, reconint:15, #writes:60, #reads:60, #reconfigs:6, #Servers:10, #Writers:5, #Recons:1, filesize:4MB

Write Operation Latency of EC
6 —e— Read Operation Latency of EC
Write Operation Latency of ABD
=+ Read Operation Latency of ABD
’g 5 - —e- Recon Operation Latency
2
o
c 44
2
5
.S 31 /’
g ~ ~
a R4 S /’
O 21 L , S, s
,/ ~o ,/ \‘
/’ \\'_———‘
14 - — e g -)e-.—-""x
—_ _*__.—— . .
i v R T
iy e e e —"
0 T ‘.l.‘ _; - T — T
10 20 30 40 50

of Readers

19_2')!5'5 : A www.algolysis.com 4 research@algolysis.com 9/6/2021

algorithmic solutions

When shall we reconfigure?

" Frequent reconfigurations => Slow Down the service

" Infrequent reconfigurations => May make the service anavailable

P

Challenge: How can we determine when is the best time to
reconfigure?

N

A www.algolysis.com =3 research@algolysis.com

9/6/2021

DriveNest: Monitoring Node Health

= Crowdsourcing Platform
= Collects data from diverse setups, locations,

o

. = Monitor storage device health by collecting
~/' S.M.A.RT data

The SMART place for your drives to be!

Start Monitoring Now

= Predict soon-to-fail drives

= Prediction performance relies on the report of
failed drives

= |ntegration with ARES
= |nitiate recon operation to remove drives that

www.drivenest.com are predicted to fail
= Seplace them with healthy nodes and migrate
ata

il_g_gll_s_'f_m A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

Drivenest: Architecture

= DriveBird: Data Collection

Internet Users DriveNest C I i e n tS

e ~\ Online Platform
User #1
= = Web platform: View your

e | (" eigoata analysis P ' Y

- ‘) Algorithms d -
Fives
/» User #b
— J (multiple systems)

Web Portal

= Prediction Engine: Applies
a humber of machine

‘ SMART Data)
. *1] Collection Worker |
A

.

> - < ~__ learning/ deep learning
' SR 5ig Data algorithms to predict
. (sMART Dot sames) SMART Dote Store) soon-to-fail drives

Nn S, D

il_g_c_’ll_ﬁlf_m A www.algolysis.com =3 research@algolysis.com 9/6/2021
Ig

algorithmic solutions

DriveNest: DriveBird Client

Download

= Production Submission Clients
= Python (cross platform)

(S.M.A.RT) info and send it to DriveNest for analysis.
Pick the client suitable for your system and you will be up and running in seconds!

Platform Download checksum Instructions

B o e " Development Submission Clients

= GUI interface for all platforms
st et R I eS| .
= Tested up to Win 10 and MacOS

Development Submission Clients

]
Host a client on each machine you want to monitor for disk failures. These clients are agents that collect your drive's hardware S I e r ra

(SM.ART) info and send it to DriveNest for analysis.
Pick the client suitable for your system and you will be up and running in seconds!

Platform Download checksum Instructions

drivebird-1.1.7.20200603- drivebird-1.1.7.20200603-

R MSWindows ' ; readme
windows.zip windows.md5
drivebird-1.1.7.20200603- drivebird-1.1.7.20200603-

D Linuxxes readme

! linux targz linux.mds

" drivebird-1.1.7.20200611- drivebird-1.1.7.20200611-

& Mocosxeanit O digh readme

macosxdmg macosx.mds

Get Stable Production Clients

%/7\ il_g_gly_ﬁls : A www.algolysis.com =3 research@algolysis.com

algorithmic solutions

DriveNest: Web Platform

Short Demo

: A www.algolysis.com =3 research@algolysis.com 9/6/2021

DriveNest: Status

" Drivenest Collection Clients: Alpha Testing

" Drivenest Web Platform: Alpha Testing

" Drivenest Predictions: Development Stage

Feel free to register and give the service a test “drive”. ©

We would be glad to hear your feedback

5 A www.algolysis.com =3 research@algolysis.com 9/6/2021

COLLABORATE: Overall Architecture

/ Client k
Client i

Data Fragmentation

Erasure

Codes Blocks

algolysis

algorithmic solutions

Reconfigurable Atomic Storage

N Insert
Atomic R/W Shared Storage < nse
L. L. L. L
- - - ~—r
~ ~ ~ ~ >
~— ~—— ~— ~— v

/ Remove

-

Reconfiguration
Service

Collect SMART data

Failure Notification

Data Collection ‘ Data Analysis -

Monitoring and Failure Prediction Service

Device Failure
Prediction

Reconfigurable Atomic Storage with Failure Prediction

A www.algolysis.com =3 research@algolysis.com

Replica z

COLLABORATE: What’s ahead

=" Complete the prediction algorithms to be used in DriveNest

=" Complete the integration of DriveNest with the Shared Storage
algorithms

" Deploy the algorithms on real systems (AWS, Rpis)
= Collect and Analyse the data

" Embedd the developed algorithms in a production level Distributed
Storage Service!

: A www.algolysis.com B4 research@algolysis.com

Thank you!

VA

algolysis

algorithmic solutions

www.algolysis.com research@algolysis.com

Solution 1: Fragmented Linearizability

update(b,, Dy’)
o ———o

update(b4, D;’)

o0
time
read(Dy’, D4);
read(D0’),, read(D1)y4
. read(Dy, Dy’); .
read(DO0)yo read(D1")p

Fragmented Linearizability: all concurrent operations on different blocks
prevail, and only concurrent operations on the same blocks are conflicting.

ME'E, A www.algolysis.com =3 research@algolysis.com 9/6/2021

algorithmic solutions

