

Let's Work Together:

Building a Robust, Consistent, and Efficient Distributed Shared Storage System for Large Data Objects that Promotes Collaboration

Presented by: Nicolas Nicolaou

This work is supported by the Cyprus Research and Innovation Foundation under the grant agreement POSTDOC/0916/0090.

In a nutshell!

Distributed Storage – Problem Statement

- Fragmentation: How to handle Large Objects
 - Blocks
 - Erasure Coding
 - Hybrid Solutions
- Reconfiguration: dealing with failures
- DriveNest: a service to predict imminent node failures

What is a Distributed Storage System?

How to share data robustly in a message-passing system?

Commercial Solutions:

- Cannot provide "sufficient guarantees" when shared objects are accesses concurrently
- Often rely on centralized solutions to enable collaboration
- Not offering "suitable guarantees" for application design

9/6/2021

3

What is a Distributed Storage System

٠

•

How to share data robustly in a message-passing system?

What is a Distributed Storage System

How to share data robustly in a message-passing system?

Shared read/write storage object

Implementing a fault-tolerant shared storage object in an asynchronous, message-passing environment:

- Availability + Survivability
 => use redundancy
- Asynchrony + Redundancy
 => concurrent operations
- Behavior of concurrent operations
 => consistency semantics
 - Safety, Regularity, Atomicity [Lamport86]

Atomicity/Linearizability

- Provides the illusion that operations happen in a sequential order
 - a read returns the value of the preceding write
 - a read returns a value at least as recent as that returned by any preceding read

A Simple Solution - ABD

- Attiya, Bar-Noy, Dolev: an elegant, intuitive solution
 - Use the power of the majority
 - Assign logical timestamps to written values
 - Wait-free solution

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly in message passing systems. *Journal of the ACM* 42(1) (1996), 124–142.

A Simple Solution - ABD

- A "read" needs to "write"
 - Phase 1: query
 - Phase 2: propagate

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly in message passing systems. *Journal of the ACM* 42(1) (1996), 124–142.

A Simple Solution - ABD

- A "read" needs to "write"
 - Phase 1: query
 - Phase 2: propagate

ATTIYA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly in message passing systems. *Journal of the ACM* 42(1) (1996), 124–142.

Solutions for Large Objects

- ABD efficient for small objects
 - Each write operation sends (S/2)+1 copies of the object
 - Each read operation sends S copies of the object
- Moreover concurrent write operations may overwrite one another
 - Unbale to handle write operations working on different parts of a large object

Main Project Goal

Develop practical and robust DSS in the message-passing, asynchronous, environment while allowing high concurrency and preserving strong consistency.

Solution 1: Fragmentation

Most intuitive solution

- Split large objects into smaller fragments
- Treat each individual block as an atomic object

Solution 1: Algorithm CoBFS

- Fragmented Objects:
 - Connected list of blocks
 - Each block points to the next block
- Write Operation write(f)
 - Propagate only modified and new blocks
- Read Operation read(f)
 - Start from genesis block and read all the blocks
 - Optimization: Only blocks that have changed are send to the read

Solution 1: Algorithm CoBFS

- Write/Update Operation:
 - Run fragmentation and block matching algorithms to determine
 - Modified blocks
 - New blocks
 - Case 1: Only a single block has changed

Case 2: Changed block overflowed and new blocks introduced

Solution 1: Basic Architecture

Rabin, M O. Fingerprinting by random polynomials, Center for Research in Computing Techn., Aiken Computation Laboratory, Univ., pp 15–18, 1981

Solution 1: Experimental Results - Scalability

Solution 1: Experimental Results - Filesize

Solution 1: Experimental Results – Read Optimization

Solution 1: Experimental Results – Block Size

Update Operation Latency (sec) vs Min/Avg Block Size (2^x B) wInt:4, rInt:4, #updates:20, #reads:20, #Servers:10, #Writers:10, #Readers:10, initial_filesize:18KB,

🟫 www.algolysis.com 🛛 🖾 research@algolysis.com 19 9/6/2021

Solution 2: Erasure Coding ([n, k] MDS Codes)

Solution 2: Erasure Coding vs Replication

A well-designed algorithm has great potential to reduce storage and communication costs while using erasure codes

Solution 2: Algorithm CoEC

Write Operation write(f)

- Apply erassure coding on f
- Send code c_i to server s_i
- Read Operation read(f)
 - Collect k codes from the servers
 - Decode and return the value of f
- Ensures Strong Consistency
- Does not prevent overwriting

Solution 2: Erasure Coding Architecture

Solution 2: Experimental Results

🟫 www.algolysis.com 🛛 🖾 research@algolysis.com 24 9/6/2021

Solution 3: Hybrid

What happens when things go wrong?

- Tolerate minority of failures
- What if more than minority fail?
- Replace failed with healthy servers => Reconfiguration

Challenge: Can we install a new configuration without stopping the service and without violating linearizability?

9/6/2021

Re-Configuration Operation

Change the configuration parameters (add/replace servers)

- Due to failures
- Due to admin maintenance

LYNCH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable atomic memory service for dynamic networks. *In Proceedings of* 16th International Symposium on Distributed Computing (DISC) (2002), pp. 173–190.

ARES: A modular and adaptive reconfiguration protocol

Modular

- Read/Write operations are not aware of the underlying shared memory implementation
 - They are using the same access primitives

Adaptive

- Different shared memory algortihm may be used in every configuration
 - Satisfying application demands

NICOLAOU, N., CADAMBE, V., KONWAR, K., PRAKASH, N., LYNCH, N., AND MEDARD, M. ARES: Adaptive, Reconfigurable, Erasure Coded, Atomic Storage. In Proc. of ICDCS, pp. 2195–2205 (2018)

9/6/2021

28

Configuration Sequence

Global configuration sequence G_L

Flags {P, F}: pending, finalized

algolysis

orithmic solution

- Pending: not yet a majority of servers received msgs
- Finalized: new configuration propagated to a majority of servers

nextC: each server points to the next configuration

Same nextC to all servers of a single config c (due to consensus)

Reconfiguration Service

A recon operation performs 2 major steps:

- 1) Configuration Sequence Traversal
- 2) Configuration *Installation*
 - Transfers the object state from the old to the new configuration

- $cseq \leftarrow finalize-config(cseq)$
- 12: end operation

attempt get to the latest configuration (1) introduce the new configuration migrate the data to the new config let servers know it is good to be finalized

Reconfiguration Service Guarantees

For any two reconfig ops π_1 , π_2 s.t. π_1 before π_2

Configuration Consistency

• Sequence Prefix

• Sequence Progress π_1

 π_2

<c<sub>0, F></c<sub>	<c<sub>1, P></c<sub>	<c<sub>2, P></c<sub>	
<c<sub>0, F></c<sub>	<c<sub>1, P></c<sub>	<c<sub>2, , F></c<sub>	

ARES: Experimental Results

Operation Latency (sec) vs # of Readers

32

When shall we reconfigure?

- Frequent reconfigurations => Slow Down the service
- Infrequent reconfigurations => May make the service anavailable

DriveNest: Monitoring Node Health

www.drivenest.com

- Crowdsourcing Platform
 - Collects data from diverse setups, locations, conditions.
- Monitor storage device health by collecting S.M.A.R.T data
- Predict soon-to-fail drives
 - Prediction performance relies on the report of failed drives
- Integration with ARES
 - Initiate recon operation to remove drives that are predicted to fail
 - Replace them with healthy nodes and migrate data

Drivenest: Architecture

- DriveBird: Data Collection Clients
- Web platform: View your drives
- Prediction Engine: Applies

 a number of machine
 learning/ deep learning
 algorithms to predict
 soon-to-fail drives

9/6/2021

DriveNest: DriveBird Client

DriveNest	Plans Co	ntact Blog	Knowledge Base	Download	ý	() 06:18	:05 Europe/Athens	4	🛓 aegeanadr	n 👻 🏦	
ſ											
				Productio	on Submission	Clients					
	Host a client on each machine you want to monitor for disk failures. These clients are agents that collect your drive's hardware (S.M.A.R.T) info and send it to DriveNest for analysis. Pick the client suitable for your system and you will be up and running in seconds!										
		Platform		Download		checksu	ım	Instructi	ons		
	a,	Duthan (a	ross-platform)	au Daius Diad	-v1.0.7.tar.gz	- Drive	Bird-v1.0.7.md5	readme			
	.6.	Python (c	ross-platform)	рурпуевіга	-v1.0.7.tar.gz	pyDrive	bira-v1.0.7.mas	reaume			
							_				
							•	Get Developm	ent Clients		
											2
							2		0		2
	Development Submission Clients							ssion Clients			
					Host a client	on each machir	e you want to monitor i			gents that collect yo	bur
	(SMAR.T) info and send it to DriveNest for analy Pick the client suitable for your system and you will be up and rur										
					-	latform	Download		checksum		1
					11 × 1	4S Windows	drivebird-1.1.7.2020	00603-	drivebird-1.1.7.2	0200603-	n

A Linux x64

ivebird-1.1.7.20200603

drivebird-1.1.7.20200603

linux.md5

readme

- Production Submission Clients
 - Python (cross platform)
- Development Submission Clients
 GUI interface for all platforms
 - Tested up to Win 10 and MacOS Sierra

36

DriveNest: Web Platform

Short Demo

🕋 www.algolysis.com 🛛 🖾 research@algolysis.com

37

9/6/2021

DriveNest: Status

- Drivenest Collection Clients: Alpha Testing
- Drivenest Web Platform: Alpha Testing
- Drivenest Predictions: Development Stage

Feel free to register and give the service a test "drive". \bigcirc

We would be glad to hear your feedback

9/6/2021

COLLABORATE: Overall Architecture

COLLABORATE: What's ahead

- Complete the prediction algorithms to be used in DriveNest
- Complete the integration of DriveNest with the Shared Storage algorithms
- Deploy the algorithms on real systems (AWS, Rpis)
 Collect and Analyse the data
- Embedd the developed algorithms in a production level Distributed Storage Service!

Thank you!

🖂 research@algolysis.com

www.algolysis.com 🍙

Solution 1: Fragmented Linearizability

Fragmented Linearizability: all concurrent operations on different blocks prevail, and only concurrent operations on the same blocks are conflicting.

