
ARES II:
Tracing the Flaws of a (Storage) God

Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048

1University of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

 SRDS 2024, Charlotte, USA

C. Georgiou, A. Trigeorgi , N. NIcolaou ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 1

• A set of servers (configuration) maintain replicas of the same data object.

• Clients (readers/writers) access the object by sending messages to these servers.

• Read/Write operations are structured in terms of phases.

• Each phase consists of two communication exchanges (broadcast & convergecast).
• Fixed Configuration -> Static environment, Reconfiguration -> Dynamic environment
• Consistency guarantees

− Safety, Regularity, Atomicity (Atomic DSMs) [Lamport 1986] 2

Shared read/write object

Servers / Replica hosts

L. Lamport,“On Interprocess Communication,” Distributed Computing, vol. 1, no. 2, pp. 77–101, 1986.

Distributed Shared Memory Emulations (DSMs)

[Attiya, Bar-Noy, Dolev 1995]
 Dijkstra Prize 2011

• Extended by Lynch and Schwarzmann

 in 1997 for MWMR, assigning tags <ts,wid> – MW-ABD

• Many more complex ABD-like protocols were developed over the years to
address various challenges such as fault-tolerance, efficiency, and scalability.

3

H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory Robustly in Message-Passing Systems,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 124–142, 1995.
N. Lynch, A. Shvartsman.. “Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts,” In Proc. of FTCS pp. 272–281 (1997).

• SWMR atomic registers

• S servers, f < n / 2

• 1 writer

• R readers
v0, 0

v1, 1

v1,1

write(v, 1)

write(v, 1)
read()

read()
v1, 1

write(v1, 1)

read(v1, 1)

An elegant, intuitive solution that
• uses the power of the majority, and

• assigns logical timestamps to written values for ordering the operations.

Seminal Algorithm - ABD

ARES - Adaptive, Reconfigurable, Erasure
Code, Atomic Storage

4N. Nicolaou, V. Cadambe, N. Prakash, A. Trigeorgi, K. M. Konwar, M. Medard, and N. Lynch, “Ares: Adaptive, reconfigurable, erasure coded, atomic storage,” ACM
Trans. Storage, jan 2022. Just Accepted.

ARES

Reconfiguration
Service

Read/Write
protocol

DAPs for each
configuration

masks host failures by adding/removing servers,
and switches between storage algorithms (DAPs)

define the exact methodology
to access the object
 ABD-DAP, EC-DAP

DAP-based abstract
Read/Write specifications

Configurations

• A configuration c is characterized by:
• A unique identifier
• A set of servers
• A quorum set system on servers
• A consensus instanse
• A DAP implementation

• D1. 𝑐. 𝑔𝑒𝑡 − 𝑡𝑎𝑔 : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 𝜏 ∈ Τ
• D2. 𝑐. 𝑔𝑒𝑡 − 𝑑𝑎𝑡𝑎 : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 − 𝑣𝑎𝑙𝑢𝑒
 𝑝𝑎𝑖𝑟 𝜏, 𝑣 ∈ Τ × 𝑉
• D3. 𝑐. 𝑝𝑢𝑡 − 𝑑𝑎𝑡𝑎 < 𝜏, 𝑣 > : the tag − value
 pair 𝜏, 𝑣 ∈ Τ × 𝑉 as argument
• ABD-DAP & EC-DAP

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 5

S1

S2

S3

Q1
Q2

Q3

Propose(c) Decide(c)

Consensus

Get-data/tag() Put-data(<t,v>)

DAPs

(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers
BUT reads and writes are still applied on the entire object
C. Georgiou, N. Nicolaou, A. Trigeorgi 6ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

Erasure Code (EC)

Original
Object

Original
Object

Configuration Sequence

• Global configuration sequence GL

• nextC: each server points to the next configuration
• Same nextC to all servers of a single config c (due to consensus)

• Flags {P, F}: pending, finalized
• Pending: not yet a quorum of servers received msgs

• Finalized: new configuration propagated to a quorum of servers

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 7

⏊ c0

CN0 Q0

nextC =(c1, F)

c1

CN1 Q1

nextC =(c2, P)

c2

CN2 Q2

nextC =(,)⏊ ⏊

Reconfiguration Service

• A reconfig operation performs 2 major steps:
1) Configuration Sequence Traversal

2) Configuration Installation
• Transfers the object state from the old to the new configuration

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 8

attempt get to the latest configuration

introduce the new configuration

move the latest value to the new config

let servers know it is good to be finalized

(1)

(2)

This service guarantees that if cseq1 and cseq2 are obtained by two clients resp.,
then either cseq1 is a prefix of cseq2 or vice versa

Read/Write Operations using DAPs

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 9

Reader Protocol
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
 (t,v)=max(cseq[i].get-data())
• Do

• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

Writer Protocol(val) (at wi)
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
 tmax=max(cseq[i].get-tag())
• (t,v)= (<tmax+1,wi>, val)
• Do

• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

Main Objective

The primary goal is to identify flaws in DSMs and guide their optimization.
We demonstrate this through the ARES DSM.

10C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

Performance Analysis Challenges in DSMs

• Identifying performance bottlenecks in complex DSMs can be
challenging

• Traditional logging techniques may not provide sufficient insight

11C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

“Distributing Tracing is a monitoring technique used to track individual

requests as they move across multiple components within a distributed

system. It helps to pinpoint where failures occur and what causes poor

performance.”

12C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

Distributed Tracing – Terminology
• A trace represents the entire journey of a request.

• A span represents a unit of work within a trace (e.g., procedures,
sections of code).

• Tracings tools: Opentemetry, Zipkin, Jaeger.

13C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

Spans

Trace

Evaluated Algorithms
ARESABD This is Ares that uses the ABD-DAP implementation.

CoARESABD The coverable version of ARESABD.

CoARESABDF The fragmented version of CoARESABD.

ARESEC This is ARES that uses the EC-DAP implementation.

CoARESEC The coverable version of ARESEC.

CoARESECF This is the two-level data striping algorithm obtained when CoARESF is used with the EC-DAP
implementation; i.e., it is the fragmented version of CoARESEC.

14C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

Methodology: ARES Distributed Tracing

15C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

Experimental Setup

We used two main tools to run the experiments:

• Emulab: an emulated WAN environment testbed.
• 39 machines with 100 Mb/s bandwidth
• Each server is deployed on a different machine.
• Clients are all deployed in the remaining machines in a round robin fashion.

• Ansible: a tool to automate different IT tasks.

• Performance Metric
• Operation latency of clients (Communication + Computation Overhead).
• Sample traces near the average duration for each scenario.
• Three executions.

16C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

Object Size

17C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

CoARESECF, S:11, W:5, R:5, init fsize:512MB, Debug Level:DSMM ARESEC, S:11, W:5, R:5, fsize:512MB, Debug Level:DSMM

Longevity

18C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,
Debug Level:DSMM

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,
Debug Level:DSMM

From ARES to ARES II

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 19

Optimisation 1: Piggybacking

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 20

Main difference:
skip read-config
for latest config

Query phase:
embed latest
configs with data

Extra function:
discover the
next config

Optimisation 1: Piggybacking – EC-DAP

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 21

requests max τ
and nextC in one go

returns max τ
and servers’ nextC

requests data list
and nextC

If nextC is finalized, servers sends
only the tag and their nextC

returns all
servers’ nextC

requests data update
and nextC

Optimisation 2: Garbage Collection

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 22

send GC
request to
servers

Last finalized config

older configs from last
finalized config

Remove the
GC configs

EC-DAP

server updates nextC to point
to the last finalized config

the server sets the
data of config to ⊥

Server’
Response

Optimisation 3: Batching

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 23

executes on a domain
of objects

transfer latest tag-value
pairs for each object
from configs

gathers the tag-value pairs
for each object o in D

transfers the maximum pair
to the new config

Optimization Results – Piggyback

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 24

• Non-Fragmented Algorithms: No notable improvements for medium-sized
objects.
• Removal of read-config occurs only twice, so impact on latency is minimal.

• CoARESF (256 MB & 512 MB): Significant performance drops without
optimization.
• Non-optimized: 4 rounds per block with double read-config.
• With 𝑃𝐵 Optimization: Reduced to 2 rounds, lower read latency.

Optimization Results – Garbage Collection

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 25

Scenario 1:

• PB version has the worst latency, since transfers data and config in 11 round trips.

• PB with GC is fastest, since it updates pointers reducing actions.

• CoARESF & Larger Objects (64MB): No differences between versions since the first block finds the latest
config and the next block starts from that config.

Scenario 2:

• Original vs. PB has similar performance with one extra round trip.

• PB with GC is faster, skipping every 4 configurations, fewer rounds needed.

Conclusions and Future Work

• Used tracing to pintpoint inefficiencies by monitoring individual procedures.

• Develop optimizations, leading to ARES II.

• Show the correctness of ARES II and conduct performance evaluations to
showcase its improvements over ARES.

Future Work - Devise strategies on when and how to introduce new configurations.

• Ensure that the system remains operational despite server failures.

• Improve performance by replacing older servers with more powerful ones.

* Monitoring tools to collect health metrics, threshold-based approaches for
determine when to reconfigure, machine learning algorithms for anomaly
detection, server rebalancing policy

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 26

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 27

Thank you!

For more information you can see the websites of our related projects:

	Slide 1: ARES II: Tracing the Flaws of a (Storage) God Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2
	Slide 2: Distributed Shared Memory Emulations (DSMs)
	Slide 3: Seminal Algorithm - ABD
	Slide 4: ARES - Adaptive, Reconfigurable, Erasure Code, Atomic Storage
	Slide 5: Configurations
	Slide 6
	Slide 7: Configuration Sequence
	Slide 8: Reconfiguration Service
	Slide 9: Read/Write Operations using DAPs
	Slide 10: Main Objective
	Slide 11: Performance Analysis Challenges in DSMs
	Slide 12
	Slide 13: Distributed Tracing – Terminology
	Slide 14: Evaluated Algorithms
	Slide 15: Methodology: ARES Distributed Tracing
	Slide 16: Experimental Setup
	Slide 17: Object Size
	Slide 18: Longevity
	Slide 19: From ARES to ARES II
	Slide 20: Optimisation 1: Piggybacking
	Slide 21: Optimisation 1: Piggybacking – EC-DAP
	Slide 22: Optimisation 2: Garbage Collection
	Slide 23: Optimisation 3: Batching
	Slide 24: Optimization Results – Piggyback
	Slide 25: Optimization Results – Garbage Collection
	Slide 26: Conclusions and Future Work
	Slide 27

