&8 | Universit algolysis
y gl ARES Il N °2
Tracing the Flaws of a (Storage) God

Authors: Chryssis Georgiou?, Nicolas Nicolaou?, Andria Trigeorgi'-?
lUniversity of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

SRDS 2024, Charlotte, USA

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048

) 2016-2020 Funded by the Y W | RESEARCH
?{eggﬁgly European Union Cypru S_tomorrow \15 "’,‘ﬁ"' & INNOVATION
a——— J-’: h\.lh; ! NeXtGeneratlonEU RECOVERY AND RESILIENCE PLAN Republicf;f(:yprus N FOUNDATION

C. Georgiou, A. Trigeorgi, N. Nicolaou ARES IlI: Tracing the Flaws of a (Storage) God — SRDS 2024 1

Distributed Shared Memory Emulations (DSMs)

Servers / Replica hosts

§ — Yo, B

Writer G
clients Reader

G clients
u ——>U2 G V1
- G — &

Shared read/write object

e A set of () maintain replicas of the same data object.
e Clients () access the object by sending messages to these servers.

» Read/Write operations are structured in terms of

* Each phase consists of communication exchanges (broadcast & convergecast).
* Fixed Configuration -> environment, Reconfiguration -> environment
* Consistency guarantees

— Safety, Regularity, (Atomic DSMs) [Lamport 1986]

L. Lamport,“On Interprocess Communication,” Distributed Computing, vol. 1, no. 2, pp. 77-101, 1986.

Seminal Algorithm - ABD

An elegant, intuitive solution that

e uses the power of the majority, and
 assigns logical timestamps to written values for ordering the operations.

vli,1 |

[Attiya, Bar-Noy, Dolev 1995]

* SWMR atomic registers writety,
& |
* S servers, = T write(v, 1) 0
L= a
* 1 writer el @
write(vl, 1) rea
* R readers — j
read(vl, 1) =
[1

* Extended by Lynch and Schwarzmann
in 1997 for , assigning tags - MW-ABD

* Many more complex ABD-like protocols were developed over the years to
address various challenges such as fault-tolerance, efficiency, and scalability.

H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory Robustly in Message-Passing Systems,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 124-142, 1995.
N. Lynch, A. Shvartsman.. “Robust emulation of shared memory using dynamic guorum-acknowledged broadcasts,” In Proc. of FTCS pp.272-281 (1997). 3

global time

ARES - Adaptive, Reconfigurable, Erasure
Code, Atomic Storage

DAP-based abstract
Read/Write Read/Write specifications

protocol

S e ey define the exact methodology
to access the object
ABD-DAP, EC-DAP

Reconfiguration
Service

configuration

masks host failures by adding/removing servers,
and switches between storage algorithms (DAPs)

N. Nicolaou, V. Cadambe, N. Prakash, A. Trigeorgi, K. M. Konwar, M. Medard, and N. Lynch, “Ares: Adaptive, reconfigurable, erasure coded, atomic storage,” ACM 4
Trans. Storage, jan 2022. Just Accepted.

Consensus

Configurations

Propose(c) [lDecide(c)

* A configuration c is characterized by:
* A unique identifier
* A set of servers
e A quorum set system on servers
* A consensus instanse

* A DAP implementation
 D1. c.get—tag():returnsatagt € T
* D2. c.get —data():returns a tag — value
pair (t,v) ET X V
* D3. c.put —data(< t,v >): the tag — value
pair(r,v) € T X V asargument Get-data/tag() l [Put—data(<t,v>)

* ABD-DAP & EC-DAP

DAPs

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 5

Erasure Code (EC)

Encoding

data disks parity disks

| > 9EC08E © 568

Calculate parity blocks

Object

Decoding

SREROO 250 0 0 |

Reconstruct failed blocks

(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers
BUT reads and writes are still applied on the entire object

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

Configuration Sequence

* Global configuration sequence G,

* nextC: each server points to the next configuration
* Same nextC to all servers of a single config c (due to consensus)

* Flags {P, F}: pending, finalized
* Pending: not yet a quorum of servers received msgs
* Finalized: new configuration propagated to a quorum of servers

Ny | Qq Ny, | CN, Q,

nextC =(c1, F) nextC =(c2, P) nextC=(1,])

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

Reconfiguration Service

* A reconfig operation performs 2 major steps:
1) Configuration Sequence Traversal

2) Configuration Installation
* Transfers the object state from the old to the new configuration

6: operation reconfig(c)
if c = 1 then =

8- cseq +read-config(cseq) attempt get to the latest configuration - (1)
cseq + add-config(cseq, c) introduce the new configuration)

10: update-config(cseq) move the latest value to the new config - (2)
cseq + finalize-config(cseq) let servers know it is good to be finalized |

12: end operation

This service guarantees that if cseql and cseq2 are obtained by two clients resp.,
then either cseql is a prefix of cseq2 or vice versa

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

Read/Write Operations using DAPs

Reader Protocol

Traverse Config Sequence cseq
Find p = max(<c, F>) in cseq
Set v = last(<c,*>) in cseq
Discover for p < i < v
(t,v)=max(cseq[i].get-data())
Do

 cseqg[v].put-data(t,v)

* Traverse Sequence cseq
while(|cseq| > v)

C. Georgiou, N. Nicolaou, A. Trigeorgi

Writer Protocol(val) (at w;)

Traverse Config Sequence cseq
Find p = max(<c, F>) in cseq
Set v = last(<c,*>) in cseq
Discover for p £ i 2 v
t,.=max(cseq[i].get-tag())
(t,v)= (KTpautl, wy>, val)
Do

 cseq[v].put-data(t,v)

« Traverse Sequence cseq
while(|cseq| > v)

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

Main Objective

The primary goal is to identify flaws in DSMs and guide their optimization.

We demonstrate this through the ARES DSM.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

10

Performance Analysis Challenges in DSMs

* |dentifying performance bottlenecks in complex DSMs can be
challenging

* Traditional logging techniques may not provide sufficient insight

Update Operation Latency per File (sec) vs Initial File Size (2% B)
wint:3, rint:3, #writes:20, #reads:20, #Servers:11, #Writers:5, #Readers:5,
maxBlockSize: 1MB, minBlockSize:512KB, avgBlockSize 512KB

80 100
0S CoABD latency CoABD success ratio
CoABD-F latency COABD-F success ratio
1 N 70 —s— CoARES_ABD latency 1 CoARES_ABD success ratio pris
0 9 9 in 9 Performance vs Scalability. $:11, W.5, fsize:1M Fl —= . COARES_ABD-F latency "1 COARES_ABD-F success ratio 2 80
1 g { —e— COARES_EC with parity 1 latency (1 CoARES_EC with parity 1 success ratio z—,
sVsS 'L a t .F orm e ABD % —= - COARES_EC-F with parity 1 latency 77 COARES_EC-F with parity 1 success ratio
y p 7 —=— ARES_ABD 5 —8— COARES_EC with parity 5 latency [COARES_EC with parity 5 success ratio /’
—e— ARES_EC < 507 —e. COARES_EC-F with parity 5 latency L7 CoARES_EC-F with parity 5 success ratio Leo
pythonj Sonlogge r j Sonlogge r —+— CASSANDRA ¢ CoARES_EC with parity 5 COARES_EC with parity 5)
o & REDIS_W % 2 (without optimization) latency = (without optimization) success ratio 2
g - COARES_EC-F with parity 5 _, COARES_EC-F with parity 5 g
= S ~*" (without optimization) latency = {without optimization) success ratio, H
g B 54 40
3 5 g —
= 4 =
= © =i ~i
= ® =
2 B 204 ! !
g ¢ B ! ! 20
c 5] i
=] i
o 10 4 i i
w3
© i i
& 1 [
= 0 " 0
2 - 20

Initial File Size (2% B}

Initial File Size: 512MB

setup_logger(logfile, level=logging.DEBUG): ° . e " e = N

Readers
=@ CoARES_EC-F

of blocks

.logger.debug(

: file_id : maxTag : value})

READ Operation Latency per Flle (sec)
3

Min/Avg Block Size (B), Max Block Size (x2 B)

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 L.

“Distributing Tracing is a monitoring technique used to track individual
requests as they move across multiple components within a distributed

system. It helps to pinpoint where failures occur and what causes poor

performance.”

Distributed Tracing — Terminology

* A trace represents the entire journey of a request.

* A span represents a unit of work within a trace (e.g., procedures,

sections of code).

* Tracings tools: Opentemetry, Zipkin, Jaeger.

Trace

StartReadRequest-MEMORY (1m 40s)
Phasel (1m 19s)

ReadConfig (1.87ms)

GetData (1m 19s)
CommunicationLatency (1m 13s)
findTag_in_k_lists (66us)
findMaxTagStar (20us)
findMaxTagVal_in_k_lists {5.87s)

Decodelatency (5.84s)
Phase2 (21.42s)

PutData (21.28s)

Encodelatency (10.21s)
CommunicationLatency (11.07s)

ReadConfig (2.72ms)

Spans

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

13

Evaluated Algorithms

ARESABD This is Ares that uses the ABD-DAP implementation.

COoARESABD The coverable version of ARESABD.
CoARESABDF The fragmented version of COARESABD.

ARESEC This is ARES that uses the EC-DAP implementation.

CoARESEC The coverable version of ARESEC.

COARESECF This is the two-level data striping algorithm obtained when CoARESF is used with the EC-DAP
implementation; i.e., it is the fragmented version of CoOARESEC.

object f
cvr-write(verQ) == veri l
—
time R blocks b, b, ©°° b
—» —_— / / blocks
cvr-write(verQ) == fall e _
= propagate ver1 cvr-write(ver1) == ver2 81 $9 Sn
servers . . . o .

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

14

Methodology: ARES Distributed Tracing
=

| > 4 Telemetry
python
Opentelemetry Traces pﬂt_;:rsnl
Instrumentation
-

---=:EE’:"'
11"_""1" (zrafana < NI,
-

-: JAEDER w

cassandra

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES IlI: Tracing the Flaws of a (Storage) God — SRDS 2024

15

Experimental Setup = =

We used two main tools to run the experiments: el = E

 Emulab: an emulated WAN environment testbed.
* 39 machines with 100 Mb/s bandwidth] o
* Each server is deployed on a different machine. il

* Clients are all deployed in the remaining machines in a round robin fashion.
* Ansible: a tool to automate different IT tasks.

* Performance Metric

e Operation latency of clients (Communication + Computation Overhead).

 Sample traces near the average duration for each scenario.
* Three executions.

Object Size

StartReadRequest-MEMORY (1m 40s)

Phasel (1m 19s) R 1m
ReadConfig (1.87ms) | 1.8F¥ms
GetData (1m 19s) N 1

CommunicationLatency (1Tm 13s) NG 1

findTag_in_k_lists (66us) 66ps |
findMaxTagStar (20us) 20ps |
findMaxTagVal_in_k_lists (5.87s) 587s 8
DecodelLatency (5.84s) 5.84s B
Phase2 (21.42s) 21.42s|
PutData (21.28s) 21.28s| N
Encodelatency (10.21s) 10.21s5| B
CommunicationLatency (11.07s) 11.07s B
ReadConfig (2.72ms) 2.72ms

ARESEC, S:11, W:5, R:5, fsize:512MB, Debug Level:DSMM

C. Georgiou, N. Nicolaou, A. Trigeorgi

-
G 6.

StartReadRequest-MEMORY (21.01ms)
Phasel (16.55ms)
® 1.44ms
GRS /.
D (13.1/4

ReadConfig (1.44ms)
GetData (14.83ms)

CommunicationLatency (13.14ms)

findTag_in_k_lists (44us) 44ps |
findMaxTagStar (28pus) 28us |
findMaxTagVal_in_k_lists (39us) 39us |
|O-read (959us) 959us @
Phase2 (4.04ms) 4.04ms D
ReadConfig (3.89ms) 3.89ms (D

COARESECFE S:11, W:5, R:5, init fsize:512MB, Debug Level:DSMM

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 17

Longevity

StartReadRequest-MEMORY (568.45ms)]
Phasel (402.5ms) I 402.5ms

ReadConfig (160.35ms)

GetData (14.03ms)
CommunicationLatency (10.52ms)
findTag_in_k_lists (33us)
findMaxTag5Star (21us)
findMaxTagVal_in_k_lists (30us)

GetData (64.99ms)
CommunicationLatency (64.54ms)
MaxTagVal (80ps)

GetData (56.03ms)
CommunicationLatency (55.65ms)
MaxTagVal (37us)

GetData (44.04ms)
CommunicationLatency (43.73ms)
MaxTagVal (35us)

GetData (61.55ms)
CommunicationLatency (61.16ms)

MaxTagVal (47us)

Phase? (165.58ms)

PutData (65.66ms)
CommunicationLatency (65.52ms)

ReadConfig (97.06ms)

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

C. Georgiou, N. Nicolaou, A. Trigeorgi

N 160.35ms
0§ 14.03ms
1 10.52ms
| 33us
| 21ps
| 30us
B 64.99ms
@ 64.54ms
| 80us
@ 56.03ms
@ 55.65ms
37us|l
44.04ms| BB
43.73ms| EB
35us |
61.55ms E
61.16ms @
a7ps |
165.58ms I
65.66ms R
65.52ms IR
97.06ms D

StartReconfigRequest-MEMORY (1.42s)
ReadConfig (53.14ms)
AddConfig (520.35ms)
UpdateConfig (846.36ms)

GetData (1.39ms)
CommunicationLatency (1.02ms)
MaxTagVal (34us)

GetData (75.04ms)
CommunicationLatency (74.66ms)
MaxTagVal (40pus)

GetData (43.72ms)
CommunicationLatency (43.25ms)
MaxTagVal (54us)

GetData (87.97ms)
CommunicationLatency (87.49ms)
MaxTagVal (41us)

GetData (72.35ms)
CommunicationLatency (71.98ms)

MaxTagVal (42us)

]
® 53.14ms
G 5°0.35ms
846.36ms IIIEEEEEENNEENNND

| 1.39ms
1 1.02ms
| 34ps
@ 75.04ms
@ 74.66ms
| 4ops
® 43.72ms
§ 43.25ms
| 54ps
87.97ms @
87.49ms @
41pus |
72.35ms @
71.98ms @

42ps |

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

C. Georgiou, N. Nicolaou, A. Trigeorgi

From ARES to ARES ||

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

19

Optimisation 1: Piggybacking

Main difference:

skip read-config operation write(val), val € V
for latest config - & : :
p 4+ max({i : cseqli]].status = F})

10: s 4 C8
while ::-::?E[T do Query phase:
12: Te, Usé— cs.efggettag() ——— 7 embed latest
Tmaz Iﬂ&x{‘n:,‘rmum] configs with data
14: cs, cseq +—find-next-config(eseq, Cs)

end while
{:Trﬂ} — {:{Tmu.::-fﬂ —+ l,wi},ilﬂf}

A +— max({i : cseqgli] # L})
cs +— cseq|A]
while cs # | do
discover the 20: ('s4— cs.cfg.put-data({r, v))
cuer «—read-configicseg)
cs, cseq +—find-next-config(cseq, C's)

next config \ -
end while

24: end operation

18:
Extra function:

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 20

Optimisation 1: Piggybacking — EC-DAP

Algorithm 3 EC-DAP II implementation

re clue S'ts mayx T at each process p; € 7 16: fragments < {e: () € Lists & t=tdcc.}

and nextC in one 90 \ procegure c.get-tag()t Cees o if ﬂlde f;’“g:e”:s tdt:‘:“
oo (QUERY-TAG) to cach s € c. Serers . g oo v O o If nextC is finalized, servers sends
. until p; receives (ts), nextCy from [:] servers in ¢.Servers 0. ¢ >
' ve only the tag and their nextC

Cs + {nextC; : received nextCy from s} ‘
‘ s s return (t2°¢), Cs

re‘tur ns max T 6 tmaz + max({ts : received ts from s}) 2 end procedure
) < return tmam, CS
omo(servers nex’CC 8: end procedure
procedure c.put-data((7, v)))
24: code-elems = [(1,e1),...,(T,en)], & = ®i(v)
procedure c.get-data() AN
10: send (QUERY-LIST) to each s € c.Servers sem'i (PUT'PATA’ (r,€:)) to each 5; € c.Servers k] _, reque sts data MP date
until p; receives Lists, nextC from [HTHC-‘ servers in c.Servers 26: until p; receives nexfC: from each server s € S st |Sg| = ’ K2 ‘ 0(
.t d .t l .t and S, C c.Servers an nex‘tC
re Ctues S ata Its 12: ‘ Cs « {nextCs : received nextC; from s} ‘]
< . . 28: | Cs + {nextCs: received nextCs from each s€Sy}
a no{ nex-t C Tagsy,, = set of tags that appears in k Lists return C's
>k
14 tdee « max(Tags7,’) 30: end procedure
if Tags>" # 0 then

returns all
servers nextC

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 21

Optimisation 2: Garbage Collection

h:rncedure ge-config{cseq) > last finalized config
38: | p+ max({i: ecsegli].status = F'})
send GC CID + {i:cseq[i] # L A1 < p} , older configs from last
request to 40: | for id in CID do finalized config
servers send (GC-CONFIG, next) to each s £ cseq[id].Servers

42: until 3Q, @ € cseqlid]. Quorums s.t. rec; receives ACK from Vs € @
/* remove the {id, cseq[id]} */

A4 cseq + cseq\ {id, cseq(id]}
/ refurn cseq
Remove the , 46 end procedure

GC configs

Lwd WLV N vl ow LA

server updates nextC to point pon receive (GC-CONFIG, cfgT;y,) s;, ¢, from g

to the last finalized con{:ig ‘\\ if Zii?gfszg%> nextC.cfg.ID then
in

for 7,e in List do
 List < List\ {(r,e)}

List «+ List U {{7, L)} Server’
the server sets the send ACK to g Response

data of config to L end receive

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

22

6:

a:

10:

12:

Optimisation 3: Batching

i , executes on a domain
operation r'emnflg;{c@ > of objects
if ¢ # L then
cseq +—read-config(ecseq)
cseq +— add-config(cseq, ¢)

update-cnnﬁg{cs&q, — transfer latest tag-value procedure update-config(cseq ,)

cseq + finalize-config(cseq) pairs for edch object ; ol zﬂg f":zgmfjﬁ =F})
eseq + ge-config(eseq) from contigs % | M=
for o in D do
end operation 28: | Mo« 0
for 1= pu: Ado
30 for o in D do
gathers the tag-value paib (t,v), _ + cseqil.cfg.get-data() for object o
for each object o in D 3. M[o] + Mo] U{(r,v)} |
for o in D do
transfers the maximum pair 34: (7,v) + max:{(t,v) : (t,v) € M[o]}
to the new Conlcig < cseqg|A].cfg.put-data((r,v)) for object o

i6: end procedure

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 23

Optimization Results — Piggyback

T T

alg./f 5; e | COARESABDF | COARESABDF P B | COARESECF | COARESECF P B
| I

IMB 284ms 278ms 149ms 142ms
| 1
|]
256MB Os | 5s (44%) 0.65s | 3.825 (60%)
512MB 21.8s | 15.25 (30%) 23.2s | 10.9s (53%)
| 1

TABLE I: READ Operation - File Size - S:11, W:5, R:5

* Non-Fragmented Algorithms: No notable improvements for medium-sized
objects.
* Removal of read-config occurs only twice, so impact on latency is minimal.

* COARESF (256 MB & 512 MB): Significant performance drops without
optimization.
* Non-optimized: 4 rounds per block with double read-config.
* With PB Optimization: Reduced to 2 rounds, lower read latency.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 24

Without Opt

FD

PB & GC

Optimization Results — Garbage Collection

DD)1

ARES

ARES

' COARES ' COARES

' COARESF ' COARESF

corfg

canfig

canfig

canfig

corfg

canfig

canfig

canfig

config

canfig

| carfig

F F F F
r r

Scenario 1:

canfig
& data

dg/fsize |ARES pp ppgGe |COARES T pp pB&cc |COARSF pp pBRGC
11 Pending Reconfiguration & 1 Finalized
config config data 4 4 N N 1~ N
1MB 159ms | 494ms | 107ms 162ms 506ms | ||110ms 181ms 191ms 127ms
:nnﬁg I:I.'ﬁnfis =
B o 64MB 5.57s |27.4s |5.58s s81s |268s | 573s 678s 6625 | 66ls]
1 1 1
~ - _ J
12 Finalized Reconfiguration
1MB 159ms | 166ms| || 119ms [163ms | 167m] 122ms 186ms | 193ms 135ms
64MB 5.80s | 5.76s ! 5.71s 5.88s ! 5.98s | 6.92s ! 6.73s !
1

5.82s
1

6.74s
1

TABLE II: READ Operation - Reconfigurations - S:11, W:1, R:10:, G:4

* PB version has the worst latency, since transfers data and config in 11 round trips.

* PB with GC is fastest, since it updates pointers reducing actions.
* COARESF & Larger Objects (64MB): No differences between versions since the first block finds the latest

config and the next block starts from that config.

Scenario 2:

e Original vs. PB has similar performance with one extra round trip.

* PB with GC is faster, skipping every 4 configurations, fewer rounds needed.

C. Georgiou, N. Nicolaou, A. Trigeorgi

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

25

Conclusions and Future Work

e Used tracing to pintpoint inefficiencies by monitoring individual procedures.
* Develop optimizations, leading to ARES II.

* Show the correctness of ARES Il and conduct performance evaluations to
showcase its improvements over ARES.

Future Work - Devise strategies on when and how to introduce new configurations.
* Ensure that the system remains operational despite server failures.
* Improve performance by replacing older servers with more powerful ones.

* Monitoring tools to collect health metrics, threshold-based approaches for
determine when to reconfigure, machine learning algorithms for anomaly
detection, server rebalancing policy

Thank you!
For more information you can see the websites of our related projects:

\I-I‘ARISIHII-\

	Slide 1: ARES II: Tracing the Flaws of a (Storage) God Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2
	Slide 2: Distributed Shared Memory Emulations (DSMs)
	Slide 3: Seminal Algorithm - ABD
	Slide 4: ARES - Adaptive, Reconfigurable, Erasure Code, Atomic Storage
	Slide 5: Configurations
	Slide 6
	Slide 7: Configuration Sequence
	Slide 8: Reconfiguration Service
	Slide 9: Read/Write Operations using DAPs
	Slide 10: Main Objective
	Slide 11: Performance Analysis Challenges in DSMs
	Slide 12
	Slide 13: Distributed Tracing – Terminology
	Slide 14: Evaluated Algorithms
	Slide 15: Methodology: ARES Distributed Tracing
	Slide 16: Experimental Setup
	Slide 17: Object Size
	Slide 18: Longevity
	Slide 19: From ARES to ARES II
	Slide 20: Optimisation 1: Piggybacking
	Slide 21: Optimisation 1: Piggybacking – EC-DAP
	Slide 22: Optimisation 2: Garbage Collection
	Slide 23: Optimisation 3: Batching
	Slide 24: Optimization Results – Piggyback
	Slide 25: Optimization Results – Garbage Collection
	Slide 26: Conclusions and Future Work
	Slide 27

