
Dependable Distributed Shared
Memory Suitable for Large,
Strongly Consistent Objects

Candidate

Andria Trigeorgi

Supervisor

Chryssis Georgiou

PhD Defence

in the Department of Computer Science

University of Cyprus

A. Trigeorgi Defence - UCY 2025 2

Growth of the Digital Universe

• 1 ZB is 1021 bytes = the estimated number of stars in the universe!

“Growth of global data ,
rising from 26 ZB in 2017 to a
projected 175 ZB by 2025.”
- International Data
Corporation (IDC)

“The data in the digital universe
doubles every two years.”
- EMC Digital Universe

Commercial Solutions:

• Often provide Weak Consistency guarantees (e.g., Dropbox)
• Limited concurrency (e.g., HDFS - one writer at a time)
• Often rely on centralized solutions to provide strong consistency​ (e.g., HDFS)

• Drawback: Performance Bottleneck

• They do not provide rigorously provable guarantees

A. Trigeorgi Defence - UCY 2025 3

Distributed Storage Systems (DSS)

Implementing a fault-tolerant shared object in an asynchronous, message-passing
environment:

• Availability + Survivability => use redundancy

• Asynchrony + Redundancy => concurrent operations

• Behavior of concurrent operations => consistency semantics

− Safety, Regularity, Atomicity (Atomic DSMs) [Lamport 1986]
4

Shared read/write object

Servers / Replica hosts

Distributed Shared Memory Emulations (DSMs)

L. Lamport,“On Interprocess Communication,” Distributed Computing, vol. 1, no. 2, pp. 77–101, 1986.

• Provides the illusion that operations happen in a sequential order

• a read returns the value of the preceding write

• a read returns a value at least as recent as that returned
by any preceding read

5

Writes

Read 1

Read 2

Read 3

*

*

*

*

time

M. Herlihy, J. Wing, “Linearizability: a correctness condition for concurrent objects,” ACM TOPLAS 12(3), 463–492 (1990).

Atomicity/Linearizability

[Herlihy, WIng 1990]

*

[Attiya, Bar-Noy, Dolev 1995]
 Dijkstra Prize 2011

Extended by Lynch and Schwarzmann

 in 1997 for MWMR, assigning tags <ts,wid> – MW-ABD

Fault tolerance & Consistency Guarantees have been rigorously proved

6

H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory Robustly in Message-Passing Systems,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 124–142, 1995.
N. Lynch, A. Shvartsman.. “Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts,” In Proc. of FTCS pp. 272–281 (1997).

• SWMR atomic registers

• S servers, f < n / 2

• 1 writer

• R readers
v0, 0

v1, 1

v1,1

write(v, 1)

write(v, 1)
read()

read()
v1, 1

write(v1, 1)

read(v1, 1)

An elegant, intuitive solution that
• uses the power of the majority, and

• assigns logical timestamps to written values for ordering the operations.

Seminal Algorithm - ABD

7

Phase1: Query - Discover maximum tag and associated value

READ Protocol of MW-ABD

<tag,value>

from majority

Compute maxTag

Andria Trigeorgi Defence - UCY 2025

8

READ Protocol of MW-ABD

Phase 2: Propagate <maxTag,value>

8

ACK

from majority

Read completes

Returns the latest value

Andria Trigeorgi Defence - UCY 2025

Update <tag, value>

9

WRITE Protocol of MW-ABD

Phase1: Query - Discover maximum tag

9

tag

from majority

Compute maxTag

Set newTag =<maxTs+1, wid>

Andria Trigeorgi Defence - UCY 2025

Andria Trigeorgi 10

Phase 2: Write <newTag, newValue>

WRITE Protocol of MW-ABD

ACK

from majority

Write completes

Update <tag, value>

Defence - UCY 2025

• Many DSMs, for both static (fixed servers) and dynamic
(remove/add servers) systems, were developed over the years.

• These protocols are:
• efficient for small objects
• expensive solutions that are difficult to implement in an

asynchronous, fail prone, message passing environment.

• Limitation 1: No enforced dependence between versions of the
object [versioning]

• Limitation 2: Unable to handle write operations working on different
parts of a large object [striping]

A. Trigeorgi Defence - UCY 2025 11

Handling Large Objects

• Versioned object: a R/W object where each value written is associated with a
version (= tag)

• Coverability is defined over a totally ordered set of versions, and extends
linearizability by guaranteeing that:

• A write on the object succeeds only when the write is associated with the
latest version of the object. Otherwise, it becomes a read operation (to
obtain the latest version)

• CoABD: Modified MW-ABD that guarantees coverability

12

Versioning and Coverability

N. Nicolaou, A. Ferna ńdez Anta, and C. Georgiou, “Coverability: Consistent Versioning in Asynchronous, Fail-Prone, Message-Passing Environments,” in Proc. of
IEEE NCA 2016, IEEE, 2016.

[Nicolaou, Anta, Georgiou 2016]

• Concurrent write operations may overwrite one another

• In some cases this is unavoidable. But what if two changes take place
on different parts of a large file?

Andria Trigeorgi Defence - UCY 2025 13

Concurrent Access on Large Objects

The development of an efficient Distributed Shared
Memory that provides provable atomic consistency

guarantees and high access concurrency at large scale
under an asynchronous, crash-prone, distributed and even

dynamic environment.

Andria Trigeorgi Defence - UCY 2025 14

Ultimate Objective

Andria Trigeorgi 15

Methodology
1. Implemented the most efficient Atomic Shared Object Algorithm.

2. Specified a Data Fragmentation Strategy.

3. Designed and implemented the framework of our system, and introduce new
consistency guarantees.

4. Implemented ARES to introduce a dynamic solution.

5. Combined our Fragmentation Strategy with ARES.

6. Evaluated our implementation against commercial solutions.

7. Deployed and evaluated the system in network testbeds (Emulab, AWS, Fed4FIRE+)

8. Identified any performance bottlenecks using distributed tracing and optimized them.

Defence - UCY 2025

Andria Trigeorgi 16

System Settings

To implement an atomic constistent DSM that:

• supports large shared R/W objects

• with two main distinct sets of processes: a set C of clients and
a set S of servers

 (Configuration = the set S of servers and some additional info)
• Fixed Configuration -> Static environment
• Reconfiguration -> Dynamic environment

• C = a set W of writers, a set R of readers, and a set G of
reconfigurers

Defence - UCY 2025

Basic Arcitectures

Andria Trigeorgi 17Defence - UCY 2025

Andria Trigeorgi Defence - UCY 2025 18

Evaluation Setup

Testbeds

 Emulab: a network testbed with tunable and controlled environmental
 parameters.

 AMAZON Web Services (AWS) EC2: a web service that provides scalability
and performance.

 Fed4FIRE+: a federation of testbeds.

Performance Metric
• Average Operation latency of all clients (Communication + Computation

Overhead).

• Update/Write Success Ratio

PART Ⅰ - Fragmented Objects:
Boosting Concurrency of Shared

Large Objects

covering Stages 1-3, 7 in Methodology

19Andria Trigeorgi Defence - UCY 2025

Andria Trigeorgi Defence - UCY 2025 20

Approach and Contribution

• Define concurrent objects: (i) the block object, and (ii) the
fragmented object.

• Define the consistency that the fragmented object provides
(fragmented coverable linearizability).

• Implement CoBFS, a Framework which implements the
fragmented objects.

• Performed an experimental evaluation of CoBFS on Emulab.

Fragmented Objects: Boosting Concurrency of
Shared Large Objects

Andria Trigeorgi Defence - UCY 2025 21

Antonio Fernández Anta 1 Chryssis Georgiou 2

Theophanis Hadjistasi 3 Nicolas Nicolaou 3 Efstathios Stavrakis 3

Andria Trigeorgi 2

1 IMDEA Networks Institute, Madrid, Spain
2 University of Cyprus, Nicosia Cyprus
3 Algolysis Ltd, Limassol, Cyprus

SIROCCO 2021

Andria Trigeorgi Defence - UCY 2025 22

Each object is fragmented into blocks

• Allows big amounts to be distributed all over the servers
• Avoids contention for concurrent accesses to different blocks

Solution: Fragmentation

• Fragmented object

• Each f is a list of blocks

• Each block has the id of its next block

• Each block is linearizable and coverable

• The first block is the genesis block bgen

• Write Operation write(f)

• Propagate only modified and new blocks

• Read Operation read(f)

• Start from bgen and read all the blocks

Andria Trigeorgi Defence - UCY 2025 23

Solution: Fragmentation

(a) Linearizability on the whole object (b) Fragmented Linearizability

Fragmented Coverable Linearizability guarantees that all concurrent operations on

different blocks prevail, and only concurrent operations on the same blocks are conflicting.

A. Fernández Anta et al. SIROCCO 2021

14/ 26

Fragmented Coverable Linearizability

Andria Trigeorgi Defence - UCY 2025 24

Andria Trigeorgi Defence - UCY 2025 25

CoBFS Framework

Read Operation

• FM issues dsmm-read for each block

• crv-read executes the read operation on DSMM

• CoABD Optimization: Only blocks that have changed are transferred

Update Operation

• FM divides objects into blocks <D0,…,Dk> using Block Identification (BI)

• FM updates each block with its corresponding data
• If k=0: dsmm-write is used
• If k>0: New blocks are created using dsmm-create, modified blocks are written using

dsmm-write, and block pointers are updated
• Block Operations: Sequential creation and write operations for chunks of data

• The block operations are executed using cvr-write on the DSMM

CoABD-F: Integration of CoABD with CoBFS

Andria Trigeorgi Defence - UCY 2025 26

Andria Trigeorgi Defence - UCY 2025 27

CoABD VS. CoABD-F (Emulab)

File Size:

• the update latency of COABD-F remains at extremely low levels, although the file size
increases.

• a read optimization decreases significantly the COABD-F read latency, since it is more
probable for a reader to already have the last version of some blocks.

Andria Trigeorgi Defence - UCY 2025 28

Overview of Results

• COABD-F has significantly lower write and read operation
latency (especially in larger files)

• For the read operation latency of smaller sizes (1MB),
suggest that there is room for improvement

• Trade-off between block size, operation latency and write
success rate

• …

• CoABD-F implements a Robust, Strongly-consistent DSM in an
asynchronous message-passing system and supports Versioning, Data
Striping, and High Access Concurrency for Large Objects

• Next Goal: Obtain such as DSM for Dynamic systems, where servers
(replica hosts) change over time, without interrupting the read/write
operations or violating data consistency

Andria Trigeorgi Defence - UCY 2025 29

Recap and Next Goal

static

PART Ⅱ - Implementation and
Experimental Evaluation of ARES

covering Stages 4 & 6, 7 in Methodology

30Andria Trigeorgi Defence - UCY 2025

• Implement ARES to enable dynamic reconfiguration.

• Performed an experimental evaluation of ARES on Emulab.

• Set up two open-source commercial solutions (Redis and Cassandra)
to compare them with ARES.

• Performed experiments in real testbeds (supported by Fed4FIRE+
project), distributed in the European Union (EU) and the USA.

31Andria Trigeorgi Defence - UCY 2025

Approach and Contribution

ARES: Adaptive, Reconfigurable, Erasure
coded, Atomic Storage

Andria Trigeorgi Defence - UCY 2025 32

Nicolas Nicolaou 1 Viveck Cadambe 2

N. Prakash 3 Andria Trigeorgi 4 Kishori M. Konwar 5

Muriel Medard 5 Nancy Lynch 5

1 Algolysis Ltd, Limassol, Cyprus
2 Pennsylvania State University, US
3 Intel Corp.
4 University of Cyprus, Nicosia Cyprus
5 Massachusetts Institute of Technology, USA

ACM Transactions on Storage

33N. Nicolaou, V. Cadambe, N. Prakash, A. Trigeorgi, K. M. Konwar, M. Medard, and N. Lynch, “Ares: Adaptive, reconfigurable, erasure coded, atomic storage,” ACM
Trans. Storage, jan 2022.

ARES

Reconfiguration
Service

Read/Write
protocol

DAPs for each
configuration

masks host failures by adding/removing servers,
and switches between storage algorithms (DAPs)

define the exact methodology
to access the object
 ABD-DAP: uses ABD to access
the object replicas
 EC-DAP: uses an erasure
coded based DSM

DAP-based abstract
Read/Write specifications

ARES (MWMR) - Adaptive, Reconfigurable, Erasure Code, Atomic Storage

[Nicolaou et al 2022]

Configurations

• A configuration c is characterized by:
• A unique identifier
• A set of servers
• A quorum set system on servers
• A consensus instanse
• A DAP implementation

• D1. 𝑐. 𝑔𝑒𝑡 − 𝑡𝑎𝑔 : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 𝜏 ∈ Τ
• D2. 𝑐. 𝑔𝑒𝑡 − 𝑑𝑎𝑡𝑎 : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 − 𝑣𝑎𝑙𝑢𝑒
 𝑝𝑎𝑖𝑟 𝜏, 𝑣 ∈ Τ × 𝑉
• D3. 𝑐. 𝑝𝑢𝑡 − 𝑑𝑎𝑡𝑎 < 𝜏, 𝑣 > : the tag − value
 pair 𝜏, 𝑣 ∈ Τ × 𝑉 as argument
• ABD-DAP & EC-DAP

34

S1

S2

S3

Q1
Q2

Q3

Propose(c) Decide(c)

Consensus

Get-data/tag() Put-data(<t,v>)

DAPs

Andria Trigeorgi Defence - UCY 2025

(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers
BUT reads and writes are still applied on the entire object

35

ARES (MWMR) - Adaptive, Reconfigurable, Erasure Code, Atomic Storage

Andria Trigeorgi Defence - UCY 2025

Original
Object

Original
Object

Configuration Sequence

• Global configuration sequence GL

• nextC: each server points to the next configuration
• Same nextC to all servers of a single config c (due to consensus)

• Flags {P, F}: pending, finalized
• Pending: not yet a quorum of servers received msgs

• Finalized: new configuration propagated to a quorum of servers

36

⏊ c0

CN0 Q0

nextC =(c1, F)

c1

CN1 Q1

nextC =(c2, P)

c2

CN2 Q2

nextC =(,)⏊ ⏊

Andria Trigeorgi Defence - UCY 2025

Reconfiguration Service

• A reconfig operation performs 2 major steps:
1) Configuration Sequence Traversal

2) Configuration Installation
• Transfers the object state from the old to the new configuration

37

attempt get to the latest configuration

introduce the new configuration

move the latest value to the new config

let servers know it is good to be finalized

(1)

(2)

This service guarantees that if cseq1 and cseq2 are obtained by two clients resp.,
then either cseq1 is a prefix of cseq2 or vice versa

Andria Trigeorgi Defence - UCY 2025

Read/Write Operations using DAPs

38

Reader Protocol
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
 (t,v)=max(cseq[i].get-data())
• Do

• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

Writer Protocol(val) (at wi)
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
 tmax=max(cseq[i].get-tag())
• (t,v)= (<tmax+1,wi>, val)
• Do

• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

Andria Trigeorgi Defence - UCY 2025

39

File Size (Emulab)

• the read and write latencies of both storage algorithms remain in low levels until 16 MB

• the write operation of EC algorithm is the faster

• the larger messages sent by ABD result in slower read operations

Andria Trigeorgi Defence - UCY 2025

40

K Scalability (Emulab)

• small k (=smaller number of data fragments) → bigger sizes of the fragments and higher redundancy.

• The write latency seems to be less affected by the number of k since the first phase of write asks only for the tag

Andria Trigeorgi Defence - UCY 2025

Andria Trigeorgi Defence - UCY 2025 41

• The write operation of ARES_EC algorithm is the faster
(especially in larger sizes)

• The larger messages sent by ARES_ABD result in slower read
operations

• Reconfiguration (server failures & changing DAPs).

• The reconfiguration operation is the slower

• Trade-off between operation latency and parity of EC

• Trade-off between operation latency and the number of
writers

Overview of Results

Invited Paper:
Towards Practical Atomic Distributed Shared

Memory: An Experimental Evaluation

Authors: Andria Trigeorgi1, Nicolas Nicolaou2, Chryssis Georgiou1, Theophanis Hadjistasi2,
Efstathios Stavrakis2, Viveck Cadambe3, and Bhuvan Urgaonkar3

Funded by: EU’s NGIAtlantic.eu cascading grant agreement no. OC4-347

1University of Cyprus, Nicosia, Cyprus
2Algolysis, Limassol, Cyprus

3Pennsylvania State University, PA, USA

 SSS 2022

42Andria Trigeorgi Defence - UCY 2025

43

Main Objective

• Primary Limitation: Expensive DSMs that are difficult to implement in
an asynchronous, fail prone, message passing environment.

• Recent works: Reduce high communication, storage, and computation

overheads (CoBFS, ARES)

How may such algorithms compare to commercially used solutions?

Andria Trigeorgi Defence - UCY 2025

44

Comparative Table

Algorithm
Consistency
guarantees

Data Striping
Non-Blocking
Reconfiguration

MWMR ABD Atomic NO NO

AREs-ABD Atomic NO YES

AREs-EC Atomic YES YES

CASSANDRA
Tunable
(eventual/atomic) NO

NO
(A single server at a
time)

REDIS/REDIS_W Eventual NO NO

Andria Trigeorgi Defence - UCY 2025

45

Stress Test – Topology (Fed4FIRE+)

Andria Trigeorgi Defence - UCY 2025

46

Stress Test – Object Size (Fed4FIRE+)

Andria Trigeorgi Defence - UCY 2025

• ABD & ARES scale better than Cassandra.

• ARES_EC outperforms Cassandra in larger objects.

• ARES has non-blocking reconfiguration mechanism (server
failures & changing DAPs).

• The topology played a major role on the performance
(throughput), of all the algorithms we studied.

• Verify the fault-tolerance and the responsiveness of ARES.

• ARES trades performance over consistency with respect to
Redis.

47

Overview of Results

Andria Trigeorgi Defence - UCY 2025

• ARES
• provable guarantees

• Operations compete closely/outperform existing DSS solutions (even when
offering weaker consistency guarantees).

• Results
• Data repository: https://github.com/nicolaoun/ngiatlantic-public-data

• Graphs: https://projects.algolysis.com/ares-ngi/results/

• Next Goal
• Integrate the dynamic (reconfigurable) DSM algorithm ARES with the DSM

module in CoBFS → CoARESF

48

Recap and Next Goal

Andria Trigeorgi Defence - UCY 2025

https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://projects.algolysis.com/ares-ngi/results/
https://projects.algolysis.com/ares-ngi/results/
https://projects.algolysis.com/ares-ngi/results/

PART Ⅲ - Fragmented ARES:
Dynamic Storage for Large

Objects

covering Stages 5, 7 in Methodology

49Andria Trigeorgi Defence - UCY 2025

50

Part Ⅲ - Approach and Contribution

• Integrate the dynamic (reconfigurable) DSM algorithm ARES with the DSM
module in CoBFS ⇨ CoARESF

• In order to integrate ARES in CoBFS, we first needed to obtain a coverable
version of ARES ⇨ CoARES

• Performed an in-depth experimental evaluation over Emulab and AWS
comparing the different versions (with/out fragmentation, with/out EC,
with/out reconfiguration).

Andria Trigeorgi Defence - UCY 2025

Fragmented ARES:
Dynamic Storage for Large Objects

Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1

1University of Cyprus, Nicosia, Cyprus
2Algolysis, Limassol, Cyprus

 DISC 2022
 Augusta, GA, USA

51Andria Trigeorgi Defence - UCY 2025

52

CoARES

Andria Trigeorgi Defence - UCY 2025

version: the
tag of the
coverable
object

flag: chg when
the write is
successful

Query phase:
find the max
tag-value pair

Main difference:
the condition
“the writer has
the latest
version?”

It updates
the state of
the object! It keeps the max tag!

Difference: it
returns both the
value and the
version

53

CoARESF

• Integrate CoARES with CoBFS

• Main challenge: Enable the fragmentation approach to invoke
reconfiguration operations reconfig(c)f

CoARES

reconfig(c)b0reconfig(c)b1reconfig(c)b2

Andria Trigeorgi Defence - UCY 2025

ARESABD This is Ares that uses the ABD-DAP implementation.

CoARESABD The coverable version of ARESABD.

CoARESABDF The fragmented version of CoARESABD.

ARESEC This is ARES that uses the EC-DAP implementation.

CoARESEC The coverable version of ARESEC.

CoARESECF This is the two-level data striping algorithm obtained when CoARESF is used with the EC-DAP
implementation; i.e., it is the fragmented version of CoARESEC.

ARES VERSIONS

54Andria Trigeorgi Defence - UCY 2025

55

File Size (Emulab)

Andria Trigeorgi Defence - UCY 2025

56

File Size (AWS)

Andria Trigeorgi Defence - UCY 2025

Andria Trigeorgi Defence - UCY 2025 57

• Fragmented algorithms have significantly lower write
operation latency both in Emulab and AWS

• For the read operation latency, AWS results of CoARESF
suggest that there is room for improvement

• EC-based algorithms are the most scalable as the servers
increase

• Trade-off between block size, operation latency and write
success rate

• Trade-off between operation latency and the parity of EC

• Trade-off between operation latency and the number of
writers

Overview of Results

58

Recap

• Presented and proved correct CoARESF, the first Dynamic, Robust,
Strongly-consistent DSM that supports Versioning, (2-level) Data
Striping, and High Access Concurrency for Large Objects

• Data available at https://github.com/atrigeorgi/fragmentedARES-
data.git

Andria Trigeorgi Defence - UCY 2025

https://github.com/atrigeorgi/fragmentedARES-data.git
https://github.com/atrigeorgi/fragmentedARES-data.git
https://github.com/atrigeorgi/fragmentedARES-data.git

PART Ⅳ – Enhance the
Performance of ARES

covering Stages 7-8 in Methodology

59Andria Trigeorgi Defence - UCY 2025

60

Part Ⅳ - Approach and Contribution

• Identify flaws in DSMs using Distributed Tracing.
We demonstrate this through the ARES DSM.

• Develop optimizations based on the found bottlenecks.

• The correctness of optimized ARES is rigorously proven.

Andria Trigeorgi Defence - UCY 2025

• Identifying performance bottlenecks in complex DSMs can be
challenging

• Traditional logging techniques may not provide sufficient insight

Performance Analysis Challenges in DSMs

61Andria Trigeorgi Defence - UCY 2025

“Distributing Tracing is a monitoring technique used to track individual

requests as they move across multiple components within a distributed

system. It helps to pinpoint where failures occur and what causes poor

performance.”

62Andria Trigeorgi Defence - UCY 2025

• A trace represents the entire journey of a request.

• A span represents a unit of work within a trace (e.g., procedures,
sections of code).

• Tracings tools: Opentemetry, Zipkin, Jaeger.

Spans

Trace

63

Distributed Tracing – Terminology

Andria Trigeorgi Defence - UCY 2025

Tracing the Latencies of Ares:
A DSM Case Study

Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048

1University of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

 ApPLIED 2024, Nantes, France

64Andria Trigeorgi Defence - UCY 2025

65

Methodology: ARES Distributed Tracing

Andria Trigeorgi Defence - UCY 2025

CoARESECF, S:11, W:5, R:5, init fsize:512MB, Debug Level:DSMM ARESEC, S:11, W:5, R:5, fsize:512MB, Debug Level:DSMM

File Size

66Andria Trigeorgi Defence - UCY 2025

ARESEC, S:3, W:5, R:50, fsize:4MB, Debug Level:DSMM ARESEC, S:11, W:5, R:50, fsize:4MB, Debug Level:DSMM

67

Participation Scalability

Andria Trigeorgi Defence - UCY 2025

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

68

Longevity

Andria Trigeorgi Defence - UCY 2025

ARES II:
Tracing the Flaws of a (Storage) God

Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048

1University of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

 SRDS 2024, Charlotte, USA

69Andria Trigeorgi Defence - UCY 2025

Main difference:
skip read-config
for latest config

Query phase:
embed latest
configs with data

Extra function:
discover the
next config

Optimisation 1: Piggybacking

70Andria Trigeorgi Defence - UCY 2025

requests max τ
and nextC in one go

returns max τ
and servers’ nextC

requests data list
and nextC

If nextC is finalized, servers sends
only the tag and their nextC

returns all
servers’ nextC

requests data update
and nextC

Optimisation 1: Piggybacking – EC-DAP

71Andria Trigeorgi Defence - UCY 2025

send GC
request to
servers

Last finalized config

older configs from last
finalized config

Remove the
GC configs

EC-DAP

server updates nextC to point
to the last finalized config

the server sets the
data of config to ⊥

Server’
Response

72

Optimisation 2: Garbage Collection

Andria Trigeorgi Defence - UCY 2025

executes on a domain
of objects

transfer latest tag-value
pairs for each object
from configs

gathers the tag-value pairs
for each object o in D

transfers the maximum pair
to the new config

73

Optimisation 3: Batching

Andria Trigeorgi Defence - UCY 2025

Optimization Results – Piggyback

Optimization Results – Piggyback

 Andria Trigeorgi Defence - UCY 2025

• CoARESF (256 MB & 512 MB): Significant performance drops without
optimization.
• Non-optimized: 4 rounds per block with double read-config.

• With 𝑃𝐵 Optimization: Reduced to 2 rounds, lower read latency.

Scenario 1:

• PB version has the worst latency, since transfers data and config in 11 round trips.

• PB with GC is fastest, since it updates pointers reducing actions.

• CoARESF & Larger Objects (64MB): No differences between versions since the first block finds the latest
config and the next block starts from that config.

Scenario 2:

• Original vs. PB has similar performance with one extra round trip.

• PB with GC is faster, skipping every 4 configurations, fewer rounds needed.
75

Optimization Results – Garbage Collection

Andria Trigeorgi Defence - UCY 2025

76

Recap

• Used tracing to pintpoint inefficiencies by monitoring individual
procedures.

• Develop optimizations, leading to ARES II.
• Show the correctness of ARES II and conduct performance evaluations to

showcase its improvements over ARES.
• Distributed tracing is crucial for diagnosing and resolving performance

issues in DSM algorithms.

Optimization Strategies
• Piggy-backing: Integrating configurations with read/write messages to expedite

configuration discovery.
• Garbage Collection: Eliminating obsolete configurations for quicker access to the

latest data.
• Data Batching: A single reconfiguration across multiple objects to enhance efficiency.

Andria Trigeorgi Defence - UCY 2025

77

Conclusion

• CoBFS has the following advantages:
• High Concurrent accesses

• Strong Consistency

• Large file size (tested up to 1GB file)

• CoARESF has the following advantages:
• the first dynamic DSM with coverable fragmented objects & 2-Level of Striping

• Optimized for High Concurrent accesses

• Theoretical principles illustrated by extensive experimental evaluation
• atomic consistency, data striping, erasure coding, access to the same files under

heavy concurrency, fault-tolerance, reconfiguration

Andria Trigeorgi Defence - UCY 2025

78

Ongoing and Future Work
• Design Reconfiguration Orchestration Strategies (ROS) for dynamic DSM

• When to invoke reconfigurations
• How to reconfigure
• Ensure that the system remains operational despite server failures.
• Improve performance by replacing older servers with more powerful ones.

• Server Failure Prediction
• Monitor environmental parameters of servers (performance, capacity, availability, and health).
• Threshold-based approaches for determine when to reconfigure.
• Predict failures using Machine Learning.

• Develop, Deploy, and Evaluate Web Platform
• Deploy and get access to configurations of DSM with ROS support by specifying servers.
• Manage existing configurations.
• Get access to existing configuration for reading and writing data objects either through the platform directly or through a third-party

application using appropriate security tokens.

• Fully-functional Distributed Storage System with Security Guarantees

• Extensive Experimental Evaluation
• Compare CoARESF against commercial solutions that employ a striping method.
• Integrate any commercial solution into CoBFS.

Andria Trigeorgi Defence - UCY 2025

79

Publications
Journal Articles

1. Ares: Adaptive, reconfigurable, erasure coded, atomic storage. N. Nicolaou, V. Cadambe, N. Prakash, A. Trigeorgi,
K. M. Konwar, M. Medard, and N. Lynch. Journal of ACM Trans. Storage 2022.

2. Boosting Concurrency and Fault-Tolerance for Reconfigurable Shared Large Object. A. F. Anta, C. Georgiou,
T. Hadjistasi, N. Nicolaou, E. Stavrakis, and A. Trigeorgi. Under Submission 2024.

Articles in Conferences

3. Robust and strongly consistent distributed storage systems. A. Trigeorgi. In Proc. of RCIS 2021.

4. Fragmented Object : Boosting Concurrency of Shared Large Objects. A. Anta, C. Georgiou, N. Nicolaou, T. Hadjistasi,
E. Stavrakis, and A. Trigeorgi. In Proc. of SIROCCO 2021.

5. Fragmented ARES: Dynamic Storage for Large Objects. C. Georgiou, N. Nicolaou, A. Trigeorgi. In Proc. of DISC 2022.
(arXiv:2201.13292)

6. Invited paper: Towards Practical Atomic Distributed Shared Memory: An Experimental Evaluation. A. Trigeorgi,

 N. Nicolaou, C. Georgiou, T. Hadjistasi, E. Stavrakis, V. Cadambe and B. Urgaonkar. In Proc. of SSS 2022.

7. Robust and Consistent Distributed Storage as a Service. A. Trigeorgi. In Proc. of GEC 2024.

8. Tracing the Latencies of Ares: A DSM Case Study. C. Georgiou, N. Nicolaou, and A. Trigeorgi. In Proc. Of ApPLIED
2024.

9. Ares II: Tracing the Flaws of a (Storage) God. C. Georgiou, N. Nicolaou, and A. Trigeorgi. In Proc. Of SRDS 2024.

5.

Andria Trigeorgi Defence - UCY 2025

Collaborators:
• Prof. Chryssis Georgiou, University of Cyprus (Supervisor)

• Dr. Nicolas Nicolaou, Algolysis Ltd

• Dr. Efstathios Stavrakis, Algolysis Ltd

• Prof. Antonio Fern ández Anta, IMDEA Networks
• Dr. Theophanis Hadjistasis, Algolysis Ltd

Examination Committee:
• Prof. Anna Philippou, University of Cyprus

• Assoc. Prof. George Pallis, University of Cyprus

• Prof. Gregory Chockler, University of Surrey, UK

• Assoc. Prof. Herodotos Herodotou, Cyprus University of Technology

80

Acknowledgments

Andria Trigeorgi Defence - UCY 2025

Thank you!

For more information you can see the websites of our related projects:

81Andria Trigeorgi Defence - UCY 2025

• PHD IN INDUSTRY/1222/0121

• DUAL USE/0922/0048

• POST-DOC/0916/0090

• EU’s NGIAtlantic.eu cascading grant agreement no. OC4-347

Related Projects

Andria Trigeorgi Defence - UCY 2025 82

CORRECTNESS

Data Access Primitives (DAPs)

• Operation Ordering: logical tags 𝜏 =< 𝑡𝑠, 𝑤𝑖𝑑 >

• For a configuration 𝑐, any client p may invoke any of the following DAPs:
• D1. 𝑐. 𝑔𝑒𝑡 − 𝑡𝑎𝑔 : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 𝜏 ∈ Τ

• D2. 𝑐. 𝑔𝑒𝑡 − 𝑑𝑎𝑡𝑎 : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 − 𝑣𝑎𝑙𝑢𝑒 𝑝𝑎𝑖𝑟 𝜏, 𝑣 ∈ Τ × 𝑉

• D3. 𝑐. 𝑝𝑢𝑡 − 𝑑𝑎𝑡𝑎 < 𝜏, 𝑣 > : the tag − value pair 𝜏, 𝑣 ∈ Τ × 𝑉 as argument

• Property 1: DAP consistency conditions
• C1: if a put-data(<𝜏,v>) precedes a get-data/get-tag operation that returns 𝜏′, then 𝜏′ ≥ 𝜏

• C2: if a get-data returns <𝜏′,v′>, then there exists put-data(<𝜏′,v′>) that precedes or is
concurrent to the get-data operation

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 84

DAP-ABD and DAP-EC satify Property 1

Proof challenges: CoARES satisfies coverability despite any
reconfiguration in the system.

• New values are not overwritten (by writes associated with
older versions)

• Versions are unique

• Eventually a single version path prevails

CoARES implements a linearizable coverable object, given that the DAPs
implemented in any configuration c satisfy DAP Consistency Conditions.

Theorem

Correctness of CoARES

85Andria Trigeorgi Defence - UCY 2025

Proof challenges
• f remains connected and composed of the most recent

blocks, despite concurrent read/write and reconfig
operations

• Each block may exist in different configurations and be
accessed by different DAPs

• Show that fragmented linearizable coverability cannot be
violated

CoARESF implements a linearizable coverable fragmented object.

Theorem

Correctness of CoARESF

86Andria Trigeorgi Defence - UCY 2025

From ARES to ARES II

• Piggy-backing: Integrating configurations with read/write
messages to speed up configuration discovery.

• Garbage Collection: Eliminating obsolete configurations for
quicker access to the latest data.

• Data Batching: A single reconfiguration across multiple objects to
enhance efficiency.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 87

Correctness of ARES II

• The correctness of ARES II depends on the correct implementation of
both EC-DAP II and the Reconfiguration protocol.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 88

Correctness of EC-DAP II

Proof Challenges

• Tag Guarantee: get-data() always returns a tag ≥ any previous put-
data().

• Value Origin: Values from get-data() come from put-data(), the initial
value, or ⊥ (due to garbage collection).

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 89

Revised Property 1 to accommodate the fact that get-data can
return a tag associated with either a value from V or ⊥.

Theorem

Reconfiguration Protocol Properties

Proof Challenges

• All processes must have the same config at index k.

• Next configs must point to a higher index than the current one.

• Future actions must start from a config at or above the last finalized
config.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 90

For completed actions π1 and π2, where π1 → π2:
a. Configuration Uniqueness
b. Subsequence
c. Sequence Progress

Theorem

Atomicity

Proof Challenges

• Ensure get-data returning ⊥ does not prevent the read operation from
retrieving a valid non-⊥ value.

• The read operation must continue until it finds a finalized (not GC) config
with the highest tag with a non-⊥ value.

• Batching must behave like multiple reconfigurations, maintaining the
correctness of read/write operations.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 91

ARES II guarantees atomicity, given that the DAPs implemented in
any configuration c satisfy Property 1 and satisfy the
reconfiguration properties.

Theorem

Correctness of EC-DAP II

Proof Challenges

• The tag returned by get-data() is guaranteed to be ≥ the tag from any
prior put-data().

• Values returned by get-data() are either from a put-data() operation,
the initial object value, or ⊥ (due to garbage collection).

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 92

Revised Property 1: DAP consistency conditions
C1: if a put-data(<𝜏,v>) precedes a get-tag (or get-data)
operation that returns 𝜏′ (or <t’,v’>/ <t’,⊥>), then 𝜏′ ≥ 𝜏
C2: if a get-data returns <𝜏′,v′> or <t’,⊥>, then there exists
put-data(<𝜏′,v′>) that precedes or is concurrent to the get-
data operation

Theorem

Reconfiguration Protocol Properties

Proof Challenges

• Must have the same configuration at index k, regardless of how they received it
(propose operation or DAP/read-config)

• If the last configuration has index k, subsequent configurations with index j must
have a nextC pointing to a configuration with index i≥j+1.

• If the last finalized configuration has index k, future actions must start from a
configuration with index j such that j≥k.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 93

For completed actions π1 and π2, where π1 → π2:
a. Configuration Uniqueness: Configuration sequences in any two

processes are identical at any common index i.
b. Subsequence: The configuration sequence x observed by π1 is

a subsequence of the sequence y observed by π2, i.e. λ(x)≤λ(y).
c. Sequence Progress: Finalized configurations progress in order.

Theorem

Atomicity

Proof Challenges

• Ensure that get-data returning ⊥ does not prevent the read operation from
retrieving a valid non-⊥ value.

• The read operation must continue until it finds a finalized configuration
that is not garbage collected, yielding the highest tag with a non-⊥ value.

• Batching is indistinguishable from multiple reconfigurations, ensuring the
correctness of read/write operations.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 94

ARES II guarantees atomicity, given that the DAPs implemented in
any configuration c satisfy Property 1 and satisfy the
reconfiguration properties.

Theorem

EXTRA SLIDES

Algorithm/
System

Data
scalability

Data
access
Concurrency

Consistency
guarantees Versioning Data

Striping
Non-blocking
Reconfic

GFS YES concurrent
appends relaxed YES YES

YES
(short
downtime)

HDFS YES files restrict one
writer at a time

atomic
(centralized) NO YES YES

Cassandra YES YES
tunable
(default=
eventual)

YES NO NO

Dropbox YES
creates
conflicting
copies

eventual YES YES N/A

Colossus YES concurrent
appends relaxed YES YES YES

Blobseer YES YES atomic
(centralized) YES YES YES

Tectonic YES files restrict one
writer at a time read-after-write YES YES YES

COABD NO NO atomic YES NO NO

COBFS (using ABD) YES YES atomic YES YES NO

LDR YES NO atomic NO NO NO

RAM BO/ DYNASTORE

SMSTORE/SPSNSTORE
NO NO atomic NO NO YES

ARESABD NO NO atomic NO NO YES

ARESEC NO NO atomic NO YES YES

COARESABD NO NO atomic YES NO YES

COARESEC NO NO atomic YES YES YES

COARESABDF YES YES atomic YES YES YES

COARESECF YES YES atomic YES
YES
(2 lvl striping)

YES

Distributed Storage Systems

Andria Trigeorgi Comprehensive - UCY 2022

System
Data
scalability

Data
access Concurr.

Consist.
guarantees

Versioning
Data
Striping

Non-blocking
Reconfig.

G F S Y ES
concurrent
appends

relaxed Y ES Y ES
Y ES
(short downtime)

C ol o ssu s Y ES
concurrent
appends

relaxed Y ES Y ES Y ES

H D F S Y ES files restrict one
writer at a time

atomic
centralized

NO Y ES Y ES

CAssANDRA Y ES Y ES
tunable
(default= eventual)

Y ES NO NO

DRoPBox Y ES
creates
conflicting copies

eventual Y ES Y ES N /A

REDIs Y ES Y ES eventual Y ES NO NO

BloBsEER Y ES Y ES
atomic
centralized

Y ES Y ES Y ES

TEcToNIc Y ES files restrict one
writer at a time Read-your- writes Y ES Y ES Y ES

97

98

CASSANDRA

• What is Cassandra? a key-value Distributed Database.

• Why Cassandra? availability, high performance, horizontal scalability.

• How it works? Gossip protocol, Peer-to-peer communication in a Ring topology.

• Tunable Consistency = number of nodes to acknowledge an operation
(default=Eventually). Can support strong consistency.

• Tunable Replication Factor (# of copies).

 We set RF=n, CL=majority (n/2+1) - atomic

Cassandra, https://cassandra.apache.org/ /index.html

99

REDIS
• What is Redis? Ultra-fast in-memory key-value store. Used as database,

cache, and for simple apps.

• It has memory limitations.

• “WAIT” command for synchronous replication

 (We set a majority (n/2 + 1) of waiting write acks).

• It provides Eventual consistency.

• Replication: Master ensures that one or more slaves becomes exact copies of it.
Clients can connect to the master or to the slaves. Slaves are read only by default.

Redis, https://redis.io

Andria Trigeorgi Proposal - UCY 2023 100

Trade-offs

• Block size of FM. data striping performance highly depends on the
block size.

• Parity of EC. the further increase of the parity (and thus higher
fault-tolerance) the larger the latency.

• Parameter δ of EC. δ = #writers & each server sends δ + 1
concurrent values in the first phase→ as the #writers increases, the
latency also increases

Participation Scalability

101C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

ARESEC, S:3, W:5, R:50, fsize:4MB, Debug Level:DSMM ARESEC, S:11, W:5, R:50, fsize:4MB, Debug Level:DSMM

Block Sizes

102C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

CoAresECF, S:11, W:5, R:5, fsize:512MB, Min/Avg Block Size:2MB,

max Block Size:4MB, Debug Level:DSMM

CoAresECF, S:11, W:5, R:5, fsize:512MB, Min/Avg Block Size:64MB,

max Block Size:128MB, Debug Level:DSMM

Longevity

103C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

CoAresF, S:11, W:5, R:15, G=1,

fsize:4MB, Debug Level:DSMM

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

The Latencies of read-config and get-data.

104C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

The Latencies of read-config and get-data.

105C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

	Slide 1: Dependable Distributed Shared Memory Suitable for Large, Strongly Consistent Objects
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: PART Ⅰ - Fragmented Objects: Boosting Concurrency of Shared Large Objects
	Slide 20
	Slide 21: Fragmented Objects: Boosting Concurrency of Shared Large Objects
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: PART Ⅱ - Implementation and Experimental Evaluation of ARES
	Slide 31
	Slide 32: ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage
	Slide 33
	Slide 34: Configurations
	Slide 35
	Slide 36: Configuration Sequence
	Slide 37: Reconfiguration Service
	Slide 38: Read/Write Operations using DAPs
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Invited Paper: Towards Practical Atomic Distributed Shared Memory: An Experimental Evaluation Authors: Andria Trigeorgi1, Nicolas Nicolaou2, Chryssis Georgiou1, Theophanis Hadjistasi2, Efstathios Stavrakis2, Viveck Cadambe3, and Bhuvan Urgaon
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: PART Ⅲ - Fragmented ARES: Dynamic Storage for Large Objects
	Slide 50
	Slide 51: Fragmented ARES: Dynamic Storage for Large Objects Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: PART Ⅳ – Enhance the Performance of ARES
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Tracing the Latencies of Ares: A DSM Case Study Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: ARES II: Tracing the Flaws of a (Storage) God Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: CORRECTNESS
	Slide 84: Data Access Primitives (DAPs)
	Slide 85
	Slide 86
	Slide 87: From ARES to ARES II
	Slide 88: Correctness of ARES II
	Slide 89: Correctness of EC-DAP II
	Slide 90: Reconfiguration Protocol Properties
	Slide 91: Atomicity
	Slide 92: Correctness of EC-DAP II
	Slide 93: Reconfiguration Protocol Properties
	Slide 94: Atomicity
	Slide 95: EXTRA SLIDES
	Slide 96
	Slide 97: Distributed Storage Systems
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Participation Scalability
	Slide 102: Block Sizes
	Slide 103: Longevity
	Slide 104: The Latencies of read-config and get-data.
	Slide 105: The Latencies of read-config and get-data.

