Dependable Distributed Shared
Memory Suitable for Large,
Strongly Consistent Objects

Candidate Supervisor

Andria Trigeorgi Chryssis Georgiou

PhD Defence

in the Department of Computer Science
University

F:EESEARCH . .
& INNOVATION University of Cyprus of Cyprus

Growth of the Digital Universe

“Growth of global data,
Annual Slze of the Glabal Datasphere @ rising from 26 ZB in 2017 to 3

) projected 175 ZB by 2025.”

- International Data
Corporation (IDC)
* 1 ZB is 10%! bytes = the estimated number of stars in the universe!

“The data in the digital universe
doubles every two years.”
- EMC Digital Universe

A. Trigeorgi Defence - UCY 2025 2

Distributed Storage Systems (DSS)

Commercial Solutions:

(& OneDrive Nextcloud
@
L 4

Google Drive Dropbox iCloud

* Often provide Weak Consistency guarantees (e.g., Dropbox)
* Limited concurrency (e.g., HDFS - one writer at a time)

e Often rely on centralized solutions to provide strong consistency (e.g., HDFS)
* Drawback: Performance Bottleneck

* They do not provide rigorously provable guarantees

A. Trigeorgi Defence - UCY 2025 3

Distributed Shared Memory Emulations (DSMs)

Servers / Replica hosts

Q v1 @ @ vy write V9 Write
s R —

Writer @ Read
clients cl?gntzr vg read v1 read

TE 3 /o g
N —) N
?J @ g global time

Shared read/write object

Implementing a fault-tolerant shared object in an asynchronous, message-passing
environment:

* Availability + Survivability => use redundancy
* Asynchrony + Redundancy => concurrent operations

* Behavior of concurrent operations => consistency semantics
— Safety, Regularity, Atomicity (Atomic DSMs) [Lamport 1986]

L. Lamport,“On Interprocess Communication,” Distributed Computing, vol. 1, no. 2, pp. 77-101, 1986.

Atomicity/Linearizability

* Provides the illusion that operations happen in a sequential order
* aread returns the value of the preceding write

e a read returns a value at least as recent as that returned
by any preceding read

[Herlihy, Wing 1990]

U1 U2

Writes TN B

U1

Read 1 *

(&)

Read 2 *

Read 3 *

v

time

M. Herlihy, J. Wing, “Linearizability: a correctness condition for concurrent objects,” ACM TOPLAS 12(3), 463-492 (1990).

Seminal Algorithm - ABD

An elegant, intuitive solution that [Attiva, Bar-Noy, Dolev 1995]

* uses the power of the majority, and *Dijkstra Prize 2011*
* assigns logical timestamps to written values for ordering the operations.

« SWMR atomic registers - writety,
e Sservers, f<n/?2 = T write(v, 1) 40
' d
e 1 writer TR @
write(v1, 1) rea
* Rreaders I wal j
read(vl, 1) =
[]

Extended by Lynch and Schwarzmann >

global time'

in 1997 for MWIMR, assighing tags <ts,wid>—- MW-ABD
Fault tolerance & Consistency Guarantees have been rigorously proved

H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory Robustly in Message-Passing Systems,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 124-142,1995.
N. Lynch, A. Shvartsman.. “Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts,” In Proc. of FTCS pp. 272—-281 (1997). 6

READ Protocol of MW-ABD

Phase1: Query - Discover maximum tag and associated value

- Compute maxTag

Andria Trigeorgi Defence - UCY 2025 7

READ Protocol of MW-ABD

Phase 2: Propagate <maxTag,value>

- Read completes
Returns the latest value

Update <tag, value> 8

Andria Trigeorgi Defence - UCY 2025 8

WRITE Protocol of MW-ABD

Phase1: Query - Discover maximum tag

Compute maxTag

@
’/ Set newTag =<maxTs+1, wid>

Andria Trigeorgi Defence - UCY 2025 9

WRITE Protocol of MW-ABD

Phase 2: Write <newTag, newValue>

. Write completes

Update <tag, value>

Andria Trigeorgi Defence - UCY 2025 10

Handling Large Objects

 Many DSMs, for both static (fixed servers) and dynamic
(remove/add servers) systems, were developed over the years.

* These protocols are:
e efficient for small objects

» expensive solutions that are difficult to implement in an
asynchronous, fail prone, message passing environment.

* Limitation 1: No enforced dependence between versions of the
object [versioning]

* Limitation 2: Unable to handle write operations working on different
parts of a large object [striping]

A. Trigeorgi Defence - UCY 2025 11

Versioning and Coverability

* Versioned object: a R/W object where each value written is associated with a
version (= tag)

e Coverability is defined over a totally ordered set of versions, and extends
linearizability by guaranteeing that:

* A write on the object succeeds only when the write is associated with the

latest version of the object. Otherwise, it becomes a read operation (to
obtain the latest version)

cvr-write(verQ) == veri [Nicolaou, Anta, Georgiou 2016]
>]
time
*
L & - -
cvr-write(verd) == fall L
== propagate ver1 cvr-write(ver1) == ver2

* CoABD: Modified MW-ABD that guarantees coverability

N. Nicolaou, A. Ferna' ndez Anta, and C. Georgiou, “Coverability: Consistent Versioning in Asynchronous, Fail-Prone, Message-Passing Environments,” in Proc. of
IEEE NCA 2016, IEEE, 2016.

12

Concurrent Access on Large Objects

* Concurrent write operations may overwrite one another

* In some cases this is unavoidable. But what if two changes take place
on different parts of a large file?

. write(x)
write(y)
write(x) Time
* >

. write(y)

Andria Trigeorgi Defence - UCY 2025 13

Ultimate Objective

The development of an Distributed Shared
Memory that provides
and at large scale

under an asynchronous, crash-prone, distributed and even
environment.

Andria Trigeorgi Defence - UCY 2025 14

Methodology

1. Implemented the most efficient Atomic Shared Object Algorithm.
2. Specified a Data Fragmentation Strategy.

3. Designed and implemented the framework of our system, and introduce new
consistency guarantees.

4. Implemented ARES to introduce a dynamic solution.

5. Combined our Fragmentation Strategy with ARES.

6. Evaluated our implementation against commercial solutions.

7. Deployed and evaluated the system in network testbeds (Emulab, AWS, Fed4FIRE+)

8. Identified any performance bottlenecks using distributed tracing and optimized them.

Andria Trigeorgi Defence - UCY 2025 15

System Settings

To implement an atomic constistent DSM that:
* supports large shared R/W objects

e with two main distinct sets of processes: a set C of clients and
a set S of servers

(Configuration = the set S of servers and some additional info)
* Fixed Configuration -> Static environment
e Reconfiguration -> Dynamic environment

e C = aset W of writers, a set R of readers, and a set G of
reconfigurers

Andria Trigeorgi Defence - UCY 2025 16

Basic Arcitectures

Distributed Shared Memory Module

: lg. Distributed Shared Memory ! l?
Client; A— — Clientj
— | gt
- - -
Application Layer _: J— Application Layer
g 8 . y-ﬁ—lﬁz B R
| Manager 3 Manager
h MNetwork -"\‘
DS3SM Operations DS3SM Operations
| T /_/
3 - | e ; - - | ‘
—= --—-"I <
DSM Client, > = DSM Client,

Andria Trigeorgi Defence - UCY 2025 17

Evaluation Setup
A‘ Testbeds

@% Emulab: a network testbed with tunable and controlled environmental
parameters.

amazon
Wwebservices™

3

s
v
FEDERATION FOR FIRE PLUS

EC2 Al\QAZOPl Web Services (AWS) EC2: a web service that provides scalability
and performance.

Fed4FIRE+: a federation of testbeds.

@ EI Performance Metric

* Average Operation latency of all clients (Communication + Computation
Overhead).

e Update/Write Success Ratio

Andria Trigeorgi Defence - UCY 2025 18

PART I - Fragmented Objects:
Boosting Concurrency of Shared
Large Objects

covering Stages 1-3, 7 in Methodology

Approach and Contribution

* Define concurrent objects: (i) the block object, and (ii) the
fragmented object.

* Define the consistency that the fragmented object provides
(fragmented coverable linearizability).

* Implement CoBFS, a Framework which implements the
fragmented objects.

* Performed an experimental evaluation of CoBFS on Emulab.

Andria Trigeorgi Defence - UCY 2025 20

Fragmented Objects: Boosting Concurrency of
Shared Large Objects

Antonio Fernandez Anta Chryssis Georgiou 2
Theophanis Hadjistasi 3 Nicolas Nicolaou 3 Efstathios Stavrakis 3
Andria Trigeorgi 2

TIMDEA Networks Institute, Madrid, Spain
2 University of Cyprus, Nicosia Cyprus
3 Algolysis Ltd, Limassol, Cyprus

SIROCCO 2021

H mve rsit J RESEARCH _
aIQOIySIS of C pru}s/ I dea | {ESTART || & INNOVATION European Union
algorithmic solutions - y FOUNDATION European Regional

Development Fund Republlo of Cypeus

A

Andria Trigeorgi Defence - UCY 2025 21

Solution: Fragmentation

Each object is fragmented into blocks
 Allows big amounts to be distributed all over the servers
* Avoids contention for concurrent accesses to different blocks

object f

l

blocks b,

/1
¢ é

servers

b2 0 0 0 bk
ocks
Sn

Andria Trigeorgi Defence - UCY 2025 22

Solution: Fragmentation

* Fragmented object f

* Each f is a list of blocks

* Each block has the id of its next block { bg — b1 — bz —>? bk 1
* Each block is linearizable and coverable

* The first block is the genesis block bgen

e Write Operation write(f)
* Propagate only modified and new blocks

f[b, H > b, } ‘ write(b,)

* Read Operation read(f)
 Start from bgenand read all the blocks

Andria Trigeorgi Defence - UCY 2025 23

Fragmented Coverable Linearizability

update(b,, Do)
L 9

update(b,, Dy’)
(o
.

time

update(b,, D)
@

time

read(Dy’, Dy);
— T -0

read(D,’, D;’)

*

(a) Linearizability on the whole object

> read(D,’, D4)¢

read(D0’)yp read(D1)y,
read(D,, D,')

o .

read(D0)yq read(D1")p

(b) Fragmented Linearizability

Fragmented Coverable Linearizability guarantees that all concurrent operations on
different blocks prevail, and only concurrent operations on the same blocks are conflicting.

read1(Dg, Dy)
— &
time

Andria Trigeorgi

read! — read?

Y

read2(Dg, Dy', Da)
—b
Defence - UCY 2025 24

CoBFS Framework

. Distributed Shared Memory Module .
Client, Client
Distributed Shared Memory
Application Layer Application Layer
" Fragmentation Module " Fragmentation Module
" Block identification | /" Block identification
Holling Hash Holling Hash
¥ ¥
Block Hash Block Hash
Saquence — Sequence
_.x batching) B 2 s = — 1 - | patching f
" ¥ " DSM Client, s, — DSM Client, ' ¥
PEEM Operations I DS5M Operations

Andria Trigeorgi Defence - UCY 2025 25

CoABD-F: Integration of CoABD with CoBFS

Read Operation
* FM issues for each block
executes the read operation on DSMM
* CoABD Optimization: Only blocks that have changed are transferred

Update Operation
* FM divides objects into blocks <D,,...,D,> using Block Identification (Bl)

* FM updates each block with its corresponding data
* If k=0: is used

* If k>0: New blocks are created using , modified blocks are written using
, and block pointers are updated

* Block Operations: Sequential creation and write operations for chunks of data
* The block operations are executed using on the DSMM

Andria Trigeorgi Defence - UCY 2025 26

CoABD VS. CoABD-F (Emulab)

Update Operation Latency (sec) vs Initial File Size (2* B)
wint:4, rint:4, #updates:5, #reads.5, #Servers:5, #Writers:5, #Readers:5,

%0 maxBlockSize:1MB, minBlockSize:512KB, avgBlockSize:512KB

= CoBFS latency CoBFS update success ratio 3l

=4~ CoABD latency mmm CoABD update success ratio 159-159

80-80

[l

(-]

(=)
L

1261-1262

629-629

m
0
a
5
o]
g
E 150 4
- 10-10
o
g 10 initial - final # of blocks
9 /B
0 55
.8 15
1o}
a
o 501
0- a A a = .
20 22 24 26 28 30
Initial File Size (2% B)
File Size:

* the update latency of COABD-F remains at extremely low levels, although the file size

Increases.

100 50

L80 _. 200
")
a
@
=
4
60 g g 150
— (15}
0 -
y I
L4032 & 100
o
0
ge
[1+]
Q
L20 < 50
0 0

Read Operation Latency (sec) vs Initial File Size (2* B)

wint:4, rint:4, #updates:5, #reads.5, #Servers:5, #Writers:5, #Readers:5,
maxBlockSize:1MB, minBlockSize:512KB, avgBlockSize:512KB

= CoBFS latency
~o— CoABD latency
=+ CoBFS latency with read optimization

| == CoABD latency with read optimization

20 2 2 3 Pl pu] 26 21 28 2 30
Initial File Size (2* B)

* aread optimization decreases significantly the COABD-F read latency, since it is more
probable for a reader to already have the last version of some blocks.

Andria Trigeorgi

Defence - UCY 2025

27

Overview of Results

* COABD-F has significantly lower write and read operation
latency (especially in larger files)

* For the read operation latency of smaller sizes (1MB),
suggest that there is room for improvement

* Trade-off between block size, operation latency and write
success rate

Andria Trigeorgi Defence - UCY 2025

28

Recap and Next Goal

* CoABD-F implements a Robust, Strongly-consistent,DSM in an
asynchronous message-passing system and supports Versioning, Data
Striping, and High Access Concurrency for

static

* Next Goal: Obtain such as DSM for Dynamic systems, where servers
(replica hosts) change over time, without interrupting the read/write
operations or violating data consistency

Andria Trigeorgi Defence - UCY 2025 29

PART II - Implementation and
Experimental Evaluation of ARES

covering Stages 4 & 6, 7 in Methodology

Approach and Contribution

* Implement ARES to enable dynamic reconfiguration.
* Performed an experimental evaluation of ARES on Emulab.

* Set up two open-source commercial solutions (Redis and Cassandra)
to compare them with ARES.

* Performed experiments in real testbeds (supported by Fed4FIRE+
project), distributed in the European Union (EU) and the USA.

Andria Trigeorgi Defence - UCY 2025 31

ARES: Adaptive, Reconfigurable, Erasure
coded, Atomic Storage

Nicolas Nicolaou Viveck Cadambe 2
N. Prakash 3 Andria Trigeorgi # Kishori M. Konwar °
Muriel Medard ° Nancy Lynch °

1 Algolysis Ltd, Limassol, Cyprus

2 Pennsylvania State University, US

3 Intel Corp.

4 University of Cyprus, Nicosia Cyprus

5 Massachusetts Institute of Technology, USA

ACM Transactions on Storage

algolysis & | University
algghmicsxmns) [[Of CYPTUS

Defence - UCY 2025

32

Andria Trigeorgi

ARES (MWMR) - Adaptive, Reconfigurable, Erasure Code, Atomic Storage

[Nicolaou et al 2022]

DAP-based abstract

Read/Write Read/Write specifications

protocol

configuration to access the object
ABD-DAP: uses ABD to access

‘ the object replicas
EC-DAP: uses an erasure

coded based DSM

‘ DAPs for each define the exact methodology

masks host failures by adding/removing servers,
and switches between storage algorithms (DAPs)

N. Nicolaou, V. Cadambe, N. Prakash, A. Trigeorgi, K. M. Konwar, M. Medard, and N. Lynch, “Ares: Adaptive, reconfigurable, erasure coded, atomic storage,” ACM 33
Trans. Storage, jan 2022.

Consensus

Configurations

Propose(c) [lDecide(c)

* A configuration c is characterized by:

* A unique identifier
* A set of servers Q1 22
* A guorum set system on servers

* A consensus instanse

A DAP implementation (
* D1. c.get —tag():returnsatagt € T
e D2. c.get —data():returns a tag — value =
pair (t,v) €T X V Q3
* D3. c.put —data(< 1,v >): the tag — value
pair(t,v) € T X V as argument Get-data/tag|() Put-data(<t,v>)

* ABD-DAP & EC-DAP

DAPs

Andria Trigeorgi Defence - UCY 2025 34

ARES (MWMR) - Adaptive, Reconfigurable, Erasure Code, Atomic Storage

Encoding

data disks parity disks

=)> 88559595, 866

Calculate parity blocks

Decoding

SRERSO 660 |0 IO

Reconstruct failed blocks

(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers
BUT reads and writes are still applied on the entire object

Andria Trigeorgi Defence - UCY 2025 35

Configuration Sequence

* Global configuration sequence G,

* nextC: each server points to the next configuration
* Same nextC to all servers of a single config c (due to consensus)

* Flags {P, F}: pending, finalized
* Pending: not yet a quorum of servers received msgs
* Finalized: new configuration propagated to a quorum of servers

CNo Qo CN, Q CN, | @
nextC =(c1, F) nextC =(c2, P) nextC=(1,])

Andria Trigeorgi Defence - UCY 2025

36

Reconfiguration Service

* A reconfig operation performs 2 major steps:
1) Configuration Sequence Traversal

2) Configuration Installation
* Transfers the object state from the old to the new configuration

6: operation reconfig(c)
if c = 1 then

8- cseq +read-config(cseq) attempt get to the latest configuration } (1)
cseq + add-config(cseq, c) introduce the new configuration
10: update-config(cseq) move the latest value to the new config (2)

eseq +— finalize-config(cseq)

let servers know it is good to be finalized
12: end operation

This service guarantees that if cseql and cseq2 are obtained by two clients resp.,
then either cseql is a prefix of cseq2 or vice versa

Andria Trigeorgi Defence - UCY 2025

37

Read/Write Operations using DAPs

Andria Trigeorgi

Reader Protocol

Traverse Config Sequence cseq
Find p = max(<c, F>) in cseq
Set v = last(<c,*>) in cseq
Discover for p < i < v
(t,v)=max(cseq[i].get-data())
Do

 cseq[v].put-data(t,v)

* Traverse Sequence cseq
while(|cseq| > v)

Writer Protocol(val) (at w;)

Traverse Config Sequence cseq
Find p = max(<c, F>) in cseq
Set v = last(<c,*>) in cseq
Discover for p < i < v
t.x=max(cseq[i].get-tag())
(t,v)= (<tpaxtl,w;>, val)
Do

« cseq[v].put-data(t,v)

« Traverse Sequence cseq
while(|cseq| > v)

Defence - UCY 2025

38

File Size (Emulab)

Operation Latency (sec) vs Initial File Size (2* B)
wint:2, rint:2, #writes:60, #reads:60, #Servers:10, #Writers:5, #Readers:5

10
Write Operation Latency of EC
—8— Read Operation Latency of EC
g Write Operation Latency of ABD
=x- Read Operation Latency of ABD

@
4,
o 61
=
3
5
S
S 4
©
Q
=
@)

2 4

u — ' e
U' = -l- T T T

20 21 22 2|3 24 25 26 27
Initial File Size (2* B)

e the read and write latencies of both storage algorithms remain in low levels until 16 MB
e the write operation of EC algorithm is the faster
* the larger messages sent by ABD result in slower read operations

Andria Trigeorgi Defence - UCY 2025 39

K Scalability (Emulab)

Operation Latency (sec) vs k
wint:2, rint:2, #writes:60, #reads:60, #Servers:10, #Writers:5, #Readers:5, filesize:4MB

1.0
Write Operation Latency of EC
—e8— Read Operation Latency of EC
0.8 1
[
@
-
o 0.6 -
=
3
9
=
2 0.4
o
10}
o
@)
0.2 1
i e
[}.0 T T T T T T T T T
1 2 3 4 5 6 7 8 9
k

* small k (=smaller number of data fragments) - bigger sizes of the fragments and higher redundancy.
» The write latency seems to be less affected by the number of k since the first phase of write asks only for the tag

Andria Trigeorgi Defence - UCY 2025 40

Overview of Results

The write operation of ARES_EC algorithm is the faster
(especially in larger sizes)

The larger messages sent by ARES _ABD result in slower read
operations

Reconfiguration (server failures & changing DAPs).
The reconfiguration operation is the slower
Trade-off between operation latency and parity of EC

Trade-off between operation latency and the number of

writers

Andria Trigeorgi Defence - UCY 2025 41

Invited Paper:
Towards Practical Atomic Distributed Shared
Memory: An Experimental Evaluation

Authors: Andria Trigeorgi?, Nicolas Nicolaou?, Chryssis Georgiou?, Theophanis Hadjistasi?,
Efstathios Stavrakis?, Viveck Cadambe?, and Bhuvan Urgaonkar?

lUniversity of Cyprus, Nicosia, Cyprus
2Algolysis, Limassol, Cyprus

3Pennsylvania State University, PA, USA

SSS 2022

Funded by: EU’s NGIAtlantic.eu cascading grant agreement no. 0C4-347

. r University a8
algolysis Oy of Cyprus
algorithmic solutions o FED/ FIRE PennState

FFFFFFFFFFFFFFFFFFFFF

Andria Trigeorgi Defence - UCY 2025 42

Main Objective

* Primary Limitation: Expensive DSMs that are difficult to implement in
an asynchronous, fail prone, message passing environment.

e Recent works: Reduce high communication, storage, and computation
overheads (CoBFS, ARES)

How may such algorithms compare to commercially used solutions?

Andria Trigeorgi Defence - UCY 2025 43

Comparative Table

. Consistency . . Non-Blocking

Algorithm guarantees Data Striping Reconfiguration
MWMR ABD Atomic NO NO
ARES-ABD Atomic NO YES _
ARES-EC Atomic YES YES

Tunable NO
CASSANDRA (eventual/atomic) | NO (A single server at a

time)
REDIS/REDIS_W Eventual NO NO eta
Andria Trigeorgi Defence - UCY 2025 e e

Operation Latency (sec)

Stress Test — Topology (Fed4FIRE+)

Performance vs Algorithm. topology:0E+3U, clients' continent:US, 5:3, W:1, R:1, fsize:32

0.120

0.110

0.100

0.0900

0.0800

0.0700

0.0600

0.0500

0.0400

0.0300

ouas LiNil]

0.0200

0.0700

[Nl irst] 0.

0 I —
ABD

m= WRITE == READ == READ_CONFIG
Andria Trigeorgi

I[| uu'm

ARES_ABD

[iNik.ir] LAk
I|:| -

ARES_EC

Defence - UCY 2025

LIRIE |}
LU

CASSANDRA

o

uusH

REDIS

s

LuxH

REDIS_W

45

Stress Test — Object Size (Fed4FIRE+)

Performance vs Filesize. #Servers:11, #Writers:5, #Readers:5 Performance vs Filesize. #Servers:11, #Writers:5, #Readers:5
-5 ABD 5= ABD
~f= ARES_ARD 10 ~J- ARES_ABD
! =@~ ARES_EC =8~ ARES EC
== CASSANDRA == CASSANDRA
b REDIS W ; REDIS W
5
i
4

WWRITE Operation Latency (sec)
READ Operation Latency (sec)

M M M M oM ™ &M 0 1M M M M 5M b Il M

Filesize Filesize

Andria Trigeorgi Defence - UCY 2025 46

Overview of Results

* ABD & ARES scale better than Cassandra.
* ARES_EC outperforms Cassandra in larger objects.

* ARES has non-blocking reconfiguration mechanism (server
failures & changing DAPs).

* The topology played a major role on the performance
(throughput), of all the algorithms we studied.

* Verify the fault-tolerance and the responsiveness of ARES.

* ARES trades performance over consistency with respect to
Redis.

Andria Trigeorgi Defence - UCY 2025 47

Recap and Next Goal

* ARES

e provable guarantees

e Operations compete closely/outperform existing DSS solutions (even when
offering weaker consistency guarantees).

* Results
* Data repository: https://github.com/nicolaoun/ngiatlantic-public-data
e Graphs: https://projects.algolysis.com/ares-ngi/results/

 Next Goal

* Integrate the dynamic (reconfigurable) DSM algorithm ARES with the DSM
module in CoBFS — CoARESF

Andria Trigeorgi Defence - UCY 2025 48

https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://github.com/nicolaoun/ngiatlantic-public-data
https://projects.algolysis.com/ares-ngi/results/
https://projects.algolysis.com/ares-ngi/results/
https://projects.algolysis.com/ares-ngi/results/

PART III - Fragmented ARES:
Dynamic Storage for Large

Objects

covering Stages 5, 7 in Methodology

Part IIl - Approach and Contribution

* Integrate the dynamic (reconfigurable) DSM algorithm ARES with the DSM
module in CoBFS => CoARESF

* In order to integrate ARES in CoBFS, we first needed to obtain a coverable
version of ARES = CoARES

* Performed an in-depth experimental evaluation over Emulab and AWS
comparing the different versions (with/out fragmentation, with/out EC,
with/out reconfiguration).

Andria Trigeorgi Defence - UCY 2025 50

Andria Trigeorgi

Fragmented ARES:
Dynamic Storage for Large Objects

Authors: Chryssis Georgiou?, Nicolas Nicolaou?, Andria Trigeorgi!

lUniversity of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

DISC 2022
Augusta, GA, USA

: University
a IgOIySIS _ of Cyprus

algorithmic solutions

Defence - UCY 2025

51

CoARES

version: the

Algorithm 1 Write and Read protocols for CoAREs

C% H-Write Uperalion:
2 at cach writer wy

State Variables:
CEET il A r||i_||| Ef = -: F. .’r}
eNT =W

P gt P4 L} dmitially (0 L}

object
fi Loeal Variables:
poe MY initaally 0, ¢ & N7 indtially 0

flag: chg when
. . e r€ MY = W initially {0, wy)
the write is T vEVinitially |
10 Hag € {ehyg, unchg) initially wechy

successful Initialization:

12 ceeqgll] = {co, F}

tag of the

coverdble

Query lokase:
find the max 14

tag-value pair

operation cerswrite|ral), val & V
LELE rl_"ild-l;l.',.'-ﬂ Fll':l S] :I
i 4= max({i : cseq(il.status = F})

F'.'lﬂlll
ar @ = j v odo
1= [

il ©ersion r thien

IJ.III |r-r'l'l'll L. IlllllI
[g LI ||.. -

unefig

Main difference:
the condition
“the writer has
the latest -

version?”

It uloo(o\‘tes
the state of
the object!

Andria Trigeorgi

L, e, wnad)

_,h LI."I
while not|done do
caeq(v).df g.put-data({7, v})
cue d=rpad-conhigl cseg)
il |esegl(= v then
v

It keeps the max tag!

Defence - UCY 2025

max(caegli e g get-datal), {7.

A0

-

12

+H

It

Ebiarle = i
wilsa
[+ +— ||"_-||' |'|||
end while
return {7,), fleg
o operation
CVH-Head Oporation:
at each reader ry
State Variables:
caeg| | abesegli] € C = {F. P}
Initialization:
£ |'|l_||| T, I‘I_:

operation cer-read| |
cacq +read-conhigl{cseq)
I 4 |||.-|'-;I:-|_|l i.!.l.'||_l|i_hl'r|l'lu-\.
[E |.".w ||l|
for i = p: v do
max(cseq|il.cfg.get-data(), (v, v})
fnlse
while not done do
caeg||ef g.put-datal (F, v})
caey 4= read-config|caeg)
il |eseg| = v then
done — fri
s
I 4

F})

LT, it} 4

e T

|emeng|

end while
refurn (T,
end aperation

Difference: it
returns both the
value and the

version 52

CoARESF

* Integrate CoARES with CoBFS

* Main challenge: Enable the fragmentation approach to invoke

reconfiguration operations reconfig(c);

/ Distributed Shared Memory Module CO AR ES \ \
e v
Reconfig Operation
/ Distributed Shared Memory \ i
0C
C

(Ca)wi 7 '
iy 8 ™ ‘
1" o9 » CN, | Q S .
A . , 4 —_—
ceeoleng | Qg a eN, | a, ﬁ =
L. ” - - - "
- s DSM Client
— d-next-config()
- » nfig()

- » : configuration link
«= . — >: consensus propose() Block Reconfig
using DSMM

reconfig(c)yg

Andria Trigeorgi Defence - UCY 2025 53

ARES VERSIONS

ARESABD This is Ares that uses the ABD-DAP implementation.

CoARESABD The coverable version of ARESABD.
CoARESABDF | The fragmented version of COARESABD.

ARESEC This is ARES that uses the EC-DAP implementation.

CoARESEC The coverable version of ARESEC.

COARESECF This is the two-level data striping algorithm obtained when CoARESF is used with the EC-DAP
implementation; i.e., it is the fragmented version of COARESEC.

cvr-write(verQ) == veri

object f

l

*
time blocks byl by v ¢ o [b
———= ———=» / blocks
cvr-write{verd) == fail e _
=> propagate vert cvr-write(ver1) == ver2 $1 $9 Sn,
servers . . .

Andria Trigeorgi

Defence - UCY 2025 54

File Size (Emulab)

Update Operation Latency per File (sec) vs Initial File Size (2" B) Read Operation Latency per File (sec) vs Inttial File Size (2" B)
wint:3, rint:3, #writes:20, #reads:20, #Servers:11, #Writers:S, #Readers:5, wint:3, rint:3, #writes:20, #reads:20, #Servers:11, #Writers:S5, #Readers:5,
maxBlockSize:1MB, minBlockSize:512KB, avgBlockSize:512K8 maxBlockSize:1MB, minBlockSize:512KB, avgBlockSize:512KB
80 100 80
- CoABD latency CoABD suiccess ratio +- CoABD latency
++ CoABD-F latency CoABD-F success ratio + + CoABD-F latency [
| CoARES_ABD latency (] CoARES ABD success ratio ;—‘I 109 g CoARES ABD latency '
E =+ COARES ABD-F latency ("2 CoARES ABD-F success ratio] IR0 5 | CoARES_ABD-f latency /
9 60 { == CoARES EC with parity 1 latency (1 CoARES_EC with parity 1 success ratio 3 | é’ 60 { == CoARES_EC with parity 1 latency /
%’ =4+ COARES ECF with parity 1 latency |7 CoARES EC-F with parity 1 success ratio : : o | =#+ CoARES_ECF with parity 1 latency ‘ /
& | == CoARES_EC with parity 5 latency [CoARES_EC with parity 5 success ratio I I | == CoARES EC with parity 5 latency '
:50' =+ COARES_EC-F with parity 5 latency (T CoARES_EC-F with parity 5 success ratio | | teo . 3301 CoARES_EC-F with panity 5 latency /
¢ COARES_EC with parity 5 CoARES EC with panty 5 ! ! 3 g CoARES_EC with parity 5 /
% 04 ¥ (without optimization) latency = (without optimization) success ratio | | v 0l ~* (without optimization) latency / \
: COARES G ith arity 5 . COMRES ECH with pary o] 1 COBRES EC- vith arty 5 /] |
S ™" (hithout optimization) latency ~= (withot optimization) success ratio ' ' P €| ™" (uithout optimization) latency j)
@ . ‘ ! . 2 /
i . - T] o g : '
g (4 e = _pH | | | ! 8
ol EIETHi i | 0
s [0 AT [H T 0] ;
? | I I I I I I I 0
Q . ! ! ! VoL
> L0kl 100 | EE L b IR :
I I I I I | I I
TP T e LT
HULREE RN | v |
| I I I
0 = - —L9
2 2 A 2 i
Inital File Size (2* B) Initial File Size (2" B)

Andria Trigeorgi Defence - UCY 2025 55

File Size (AWS)

: Min Block Size: 512kB, Avg Block Size: 512kB, Max Block Size: 1MB ' Alqorithm: CoARES. ABD-F, Min Block Size: 512kB, Av Block Size: 512kB, Max Block Size: 1MB
6 e ¥~ (OARES ABD By -+ READ Operaton Latency
300 23— el LOARES AR Read Confg Latency
/ == (OARES_EC =1 \
2 ; ot CONRES ECF 5
& 250 COARES EC me4 b o
v COARES.EC-F m4 M "
L [V s
. 9
220 o
> 3 v
¢ 1 - 06
o 2 0 1,
5150 f b i
5 mean # of blocks 0 ﬁ L
T c)
[0‘5 '_.
g 100 g T '
8 g | [T Beiniinngee ¥ '
5 a
¢ 03 § § g "
J 4 i 1 ‘
W
s
0 PITV TTTTTTTeoe
™ 2 5 10M 2 5 100M 2 5 03
Initial File Size (B) T ! 3 1M ! R [5
Intial File Sze (B)

Andria Trigeorgi Defence - UCY 2025 56

Overview of Results

* Fragmented algorithms have significantly lower write
operation latency both in Emulab and AWS

* For the read operation latency, AWS results of COARESF
suggest that there is room for improvement

* EC-based algorithms are the most scalable as the servers
Increase

* Trade-off between block size, operation latency and write
success rate

* Trade-off between operation latency and the parity of EC

* Trade-off between operation latency and the number of
writers

Andria Trigeorgi Defence - UCY 2025 57

* Presented and proved correct COARESF, the first Dynamic, Robust,
Strongly-consistent DSM that supports Versioning, (2-level) Data
Striping, and High Access Concurrency for Large Objects

» Data available at https://github.com/atrigeorgi/fragmentedARES-
data.git

Andria Trigeorgi Defence - UCY 2025 58

https://github.com/atrigeorgi/fragmentedARES-data.git
https://github.com/atrigeorgi/fragmentedARES-data.git
https://github.com/atrigeorgi/fragmentedARES-data.git

PART IV — Enhance the
Performance of ARES

covering Stages 7-8 in Methodology

Part IV - Approach and Contribution

* Identify flaws in DSMs using Distributed Tracing.
We demonstrate this through the ARES DSM.

* Develop optimizations based on the found bottlenecks.

* The correctness of optimized ARES is rigorously proven.

Andria Trigeorgi Defence - UCY 2025 60

Performance Analysis Challenges in DSMs

* |dentifying performance bottlenecks in complex DSMs can be
challenging

* Traditional logging techniques may not provide sufficient insight

Update Operation Latency per File (sec) vs Initial File Size (2 B)
wint:3, rint:3, #writes:20, #reads:20, #Servers:11, #Writers:5, #Readers:5,

0 S Performance vs Scalability. S:11, W:5, fsize:1M maxBlockSize:1MB, minBlockSize:512KB, avgBlockSize:512KB
80 100
80 CoABD latency CoABD success ratio
i s ARES_ABD CoABD-F latency CoABD-F success ratio
-l_ 0 g g in g 7 ARES EC 0] - COARES_ABD latency CoARES_ABD success ratio =
CasoAnDRA 3 —8 . COARES_ABD-F latency [CoARES_ABD-F success ratio .)
-L it _F - . REDIS W 9 g | —e— COARES_EC with parity 1 latency COARES_EC with parity 1 success ratio Z*,
S Y S D a orm 2 - 2 —& . COARES_EC-F with parity 1 latency [COARES_EC-F with parity 1 success ratio /.
< 5 —e— CoARES_EC with parity 5 latency 1 CoARES_EC with parity 5 success ratio
3 : e 2501 e CoARES_EC-F with parity 5 latenc (=21 CoARES_EC-F with parity 5 success ratio L
thonjsonlogger sonlogger s g y s Y y s ®z
p y J g g J g g E H COARES_EC with parity 5 COARES_EC with parity 5 5
2 % 40 ™ Wwithout optimization) latency = {without optimization) success ratio ”
S 4 - CoARES_EC-F with parity 5 _, COARES_EC-F with parity 5 g
® s " (without optimization) latency 2 {without optimization) success ratio, w B
@ 2 L
o 2 30
o 2
w3] =
[= @
g T 20 4 -
= 2 I 20
SetuplLogger: : — . R
-1
-
1
o v ? 0
0 50 100 150 200 250 20 2
Initial File Size (2 B)
Readers

setup_logger(logfile, level=logging.DEBUG): Intial Fil Size: 51208

100 -® - COARES_ABD-F
e COARES_EC-F

of blocks

.logger.debug(

: file_id : maxTag : valuel})

READ Operation Latency per File (sec)
3

MinsAvg Block Size (B), Max Block Size (x2 B)

Andria Trigeorgi Defence - UCY 2025 61

“Distributing Tracing is a monitoring technique used to track individual
requests as they move across multiple components within a distributed

system. It helps to pinpoint where failures occur and what causes poor

performance.”

Distributed Tracing — Terminology

* A trace represents the entire journey of a request.

* A span represents a unit of work within a trace (e.g., procedures,

sections of code).

* Tracings tools: Opentemetry, Zipkin, Jaeger.

Trace

Andria Trigeorgi Defence - UCY 2025

StartReadRequest-MEMORY (1m 40s)
Fhasel (1m 18s)
ReadConfig (1.87ms)
m 19s)

CommunicationLatency (1m 13s)

findTag_in_k_lists (66s)
findMaxTagStar (20us)

indMaxTagVal_in_k_lists (5.87s)

Decodelatenc y (5.84s)
Phase2 (21.42s)
PutData (21.28s)

Encodelatency (10.21s)

CommunicationLatency (11.07s)

ReadConfig (2.72ms)

Spans

63

University

of Cyprus Tracing the Latencies of Ares:
A DSM Case Study

Authors: Chryssis Georgiou?, Nicolas Nicolaou?, Andria Trigeorgi'*

lUniversity of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

ApPLIED 2024, Nantes, France

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048

Luncec by the Cyprus—tomorrow

European Union Y

. =

N
~

2016-2020
i’?{ START

ey

Andria Trigeorgi Defence - UCY 2025

NextGenerationEU COVER ID RESILIENCE PLAN Republic of Cyprus

algolysis

algorithmic solutions

RESEARCH
& INNOVATION
FOUNDATION

-

64

Methodology: ARES Distributed Tracing

- -

| > 4 Telemetry
python
Opentelemetry Traces pglt_;:rsnl
Instrumentation

;.
-'-'-::Eﬁ:"'
d ™y Grafong €<—— & * —)8
:.:*-F' i

JAECER {»w

cassandra

Andria Trigeorgi Defence - UCY 2025 65

File Size

StartReadRequest-MEMORY ({1m 40s) S
Phasel (1m 19s) .

StartReadRequest-MEMORY (21.01ms) S
ReadConfig (1.87ms) | 1.8fms
Phase1 (16.55ms)]
GetData (1m 19s) N 1M
o ReadConfig (1.44ms) |
CommunicationLatency (1m 13s) D 1m
findTag_in_k_lists (66us) Geps | GetData (14.83ms)
findMaxTagStar (20ps) Sous | CommunicationLatency (13.14ms)
findMaxTagVal_in_k_lists (5.87s) 5.875 findTag_in_k_lists (44ps) '
Decodelatency (5.84s) 5.84s B findMaxTagStar (28ps) I
Phase2 (21.42s) 21.42s| N findMaxTagVal_in_k_lists (39us) |
PutData (21.28s) 21.268s |0-read (959ps) (]
Encodelatency (10.21s) 10.21s| 8 Phase?2 (4.04ms))
CommunicationLatency (11.07s 175 .
| y (11.075) Y ReadConfig (3.89ms) —
ReadConfig (2.72ms) 2.72ms
ARESEC, S5:11, W:5, R:5, fsize:512MB, Debug Level:DSMM CoARESECF, S5:11, W:5, R:5, init fsize:512MB, Debug Level:DSMM

Andria Trigeorgi Defence - UCY 2025 66

Participation Scalability

StartReadRequest-MEMORY (3.77s)
Phasel (3.56s)

ReadConfig (23.78ms)

I

]
=]
=%
0

GetData (3.53s)

CommunicationLatency (3.53s)

findTag_in_k_lists (65pus) G5ps |
findMaxTagStar (30pus) 30ps |
findMaxTagVal_in_k_lists (7.47ms) 7.47ms |
Decodelatency (7.3ms) 7.3ms |
Phase2 (212.79ms) 212.79ms @
PutData (187.03ms) 187.03ms @
Encodelatency (7.42ms) 7.42ms |
CommunicationLatency (179.31ms) 179.31ms B
ReadConfig (25.45ms) 25.45ms |

ARESEC, S:3, W:5, R:50, fsize:4MB, Debug Level:DSMM

Andria Trigeorgi

StartHeadRequest-MEMORY (855.56ms)
Phasel (764.74ms)

ReadConfig (18.54ms) I 18.54ms

GetData (745.84ms)

CommunicationLatency (71714ms) N 7.1

findTag_in_k_lists (86us) B6ps |l
findMaxTagStar (27us) 2Tus |1
findMaxTagVal_in_k_lists (27.95ms) 27.95ms | #
Decodelatency (27.73ms) 27.73ms |8
Phase2 (190.43ms) 190.43ms D
PutData (170.25ms) 170.25ms N
Encodelatency (74.98ms) 74.98ms @
CommunicationLatency (94.94ms) 94.94ms N
ReadConfig (19.83ms) 19,83ms 1

ARESEC, S:11, W:5, R:50, fsize:4MB, Debug Level:DSMM

Defence - UCY 2025 67

Longevity

StartReadRequest-MEMORY (568.45ms)
Phasel (402.5ms)

ReadConfig (180.35ms)

GetData (14.03ms)
CommunicationLatency (10.52ms)
findTag_in_k_lists (33ps)
findMaxTagStar (21us)
findMaxTagVal_in_k_lists (30us)

GetData (64.99ms)
CommunicationLatency (64.54ms)
MaxTagVal (80us)

GetData (56.03ms)
CommunicationLatency (55.65ms)
MaxTagVal (37us)

GetData (44.04ms)
CommunicationLatency (43.73ms)
MaxTagVal (35us)

GetData (61.55ms)
CommunicationLatency (61.16ms)
MaxTagVal (47us)

Phase2 (165.58ms)

PutData (65.66ms)

CommunicationLatency (65.52ms)

ReadConfig (97.08ms)

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,
Debug Level:DSMM

Andria Trigeorgi

StartReconfigRequest-MEMORY (1.42s)
ReadConfig (53.14ms)
AddConfig (520.35ms)
UpdateConfig (846.36ms)

GetData (1.39ms)
CommunicationLatency (1.02ms)
MaxTagVal (34pus)

GetData (75.04ms)
CommunicationLatency (74.66ms)
MaxTagVal (40ps)

GetData (43.72ms)
CommunicationLatency (43.25ms)
MaxTagVal (54ps)

GetData (87.97ms)
CommunicationLatency (87.49ms)
MaxTagVal (41us)

GetData (72.35ms)
CommunicationLatency (71.98ms)

MaxTagVal (42ps)

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

Defence - UCY 2025

Rk e algolysis
y gl ARES Il 0 o
Tracing the Flaws of a (Storage) God

Authors: Chryssis Georgiou?, Nicolas Nicolaou?, Andria Trigeorgi~
lUniversity of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

SRDS 2024, Charlotte, USA

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048

\ 20162020 Funded by the !.,W;! 1) RESEARCH
i«'/{ESTART EuropeanyUnion Cypl‘u s___tomorrow Wy ¢, INNOVATION
SEARCH . i e e 2 FOUNDATION
- J:: ,‘, NextGenerationEU RECOVERY AND RESILIENCE PLAN Republic of Cyprus A.

Andria Trigeorgi Defence - UCY 2025 69

Optimisation 1: Piggybacking

Main difference:

skip read-config operation write(val), val € V
for latest config -

‘1;{— max({i : qu[*.;li].status = F})

10: s 4 C8
while HE;[T do Query phase:
12: Te,Cs— csefgget-tag() _ ——— embed latest
Tmazx mﬂx{‘r‘c,‘rmum] con{:igs with data
14: cs, cseq +—find-next-config(eseq, Cs)

end while
{:Trﬂ} — {:{Tmu.:-fﬂ —+ l,wi:},ilﬂ.f:}

A +— max({1 : eseq[i] # L})
cs +— cseq|A]
while cs = | do
discover the 20: (s4— cs.cfg.put-data({r,v})
cwer «—read-configiesee)
cs, cseq +—find-next-config(cseq, Cs)

next config \ -~
end while

24: end operation

18:
Extra function:

Andria Trigeorgi Defence - UCY 2025 70

Optimisation 1: Piggybacking — EC-DAP

Algorithm 3 EC-DAP II implementation

ye%ue StS mayx T at each process p; € 16: fragments < {e: (r.e) € Lists & 7=td¢_}

and nextC in one 90 Npmcegure caes) N if Mde fdmgl’;e”f” tdt:‘:“
oo (QUERY-TAG) tocach s € c Serers . L g ok vee O e If nextC is finalized, servers sends
: until p; receives (ts), nextCs from [3 -‘ servers in c.Servers 20 ¢ e _
' v only the tag and their nextC

tCs : received tCy from ‘
‘ Cs + {nextC, ved nextCs s} retum (¢4 o) ('s

N

returns max T 6: tmaz + max({ts : received ¢ from s})
P 22: end procedure
) < return tpq;, C's
dﬂd servers nex‘tC 8: end procedure
procedure c.put-data((r,v)))
24: code-elems = [(T,e1),...,(T,en)], & = ®;i(v)
procedure c.get-data() ’ AN
10: send (QUERY-LIST) to each s € c.Servers se"fl (PUT'PATA’ {r,e4)) to each s; € c.Servers SR > rectue sts data MP date
until p; receives List,, nextC; from ["Tk-l servers in c.Servers 20° ntl pi receives nextCs from each server s € S sit. |Sg| = ‘ 2 ‘ 0(_t
.t da.ta l S_t and S; C c.Servers anad nextC
Veque S1s (12: ’ Cs + {nextC; : received nextC; from s} ‘

28: | Cs + {nextCs: received nextCs from each s€Sg}

an O{ n ex-tc Tagsfekc = set of tags that appears in k Lists return C's
>k
14 tiee, « max(Tagsg,,) 30: end procedure

if Tags7" # 0 then

returns all
servers' nextC

Andria Trigeorgi Defence - UCY 2025 71

Optimisation 2: Garbage Collection

h:rnc&dure ge-configicseq) > last finalized config
38: | p o+ max({i: cseqgli].status = F'})
send GC CID + {i:cseq|i] # L MNi < p} , older configs from last
request to 40: | for id in CTD do finalized config
servers send (GC-CONFIG, next) to each s € cseqlid].Servers
42: until 3Q, @ € cseqlid]. Quorums s.t. rec; receives ACK from Vs € ()
/* remove the {id, cseq[id]} */
44: cseq +— cseq', {id, cseg(id]}
/ refurn cseq EC-DAP
Remove the 46: r&nd procedure

GC configs

ClU ICUCIYE

server updates nextC to point pon receive (GC-CONFIG, ¢fgT;y) s;, ¢, from g

to the last finalized config T | ;J;g;g’ggffg%> nextC.cfg.1D then
in

for 7,e in List do
_ List « List\ {(1,¢e)}

List < List U {{(r, L)} Server’
the server sets the send ACK to g Response

data of config to L end receive

Andria Trigeorgi Defence - UCY 2025 72

Optimisation 3: Batching

executes on a domain

6: operation r'ec:::-nfig;{c@ " of objects
if ¢ # L then
8: cseq +—read-config(eseq)
eseq +— add-config(eseq, c)
10 update-config(cseqg transfer latest tag-value procedure update-config(cseq . D)
cSEq ﬁnali:—:e—::nn!fig cm pairs for each object 2 ol mMEF f“"“_’e‘"{?%'fj";’]‘ =F})
: from configs s T
12: cseq +— ge-config(cseq) J % | M=
for o in D do
end operation 2% | Mio] 0
for 1= p: Ado
30 for o in D do
gathers the tag-value Paib (t, v}, _ + cseqfi].cfg.get-data() for object o
for each object o in D 12: M]o] « M[o] U {{r,v)}
for o in D do
Jcmr\sfevs the maximum [oair 14: (,v) + max¢{{t,v) : {t,v) € M[o]}
to the new con{:ig <« cseq|A].cfg.put-data({r, v}) for object o

36: end procedure

Andria Trigeorgi Defence - UCY 2025 73

Optimization Results — Piggyback

1 1

alg/f 5; »e | COARESABDF | COARESABDF P B | COARESECF | COARESECF P B

IMB 284ms | 278ms 149ms | 142ms

3.82s (60%)

512MB 21.8s 15.25 (30%) 23.2s 10.9s (53%)

|
256 MB Os | 5s (44%) 0.65s
|

TABLE I: READ Operation - File Size - S:11, W:5, R:5

* COARESF (256 MB & 512 MB): Significant performance drops without
optimization.
* Non-optimized: 4 rounds per block with double read-config.
* With PB Optimization: Reduced to 2 rounds, lower read latency.

Andria Trigeorgi Defence - UCY 2025

Without Opt

FB

PB & GC

DDA+ DL

Optimization Results — Garbage Collection

carfig

canfig

canfig

canfig

config

config

data

carfig

canfig

canfig

canfig

config

carnfig

canfig

| canfig

F
E

Scenario 1:

canfig
& dista

(P L

config
& data

o/ f_ . ARES ' ARES ' ARES COARES ' COARES ' COARES COARESF ' COARESF ' COARESF
alg/fsize PB PB&GC PB PB&GC PB ,PB&GC
11 Pending Reconfiguration & 1 Finalized

"4 4)\ 4 N\ I/ \
1MB 159ms | 494ms | 107ms 162ms 506ms | |[110ms 181ms 191ms] [127ms]
64MB 5.57s |27.4s |5.58s 5.81s 26.8s | 5.73s 6.78s l 6.62s I 6.61s]
1 1 [
1 J
12 Finalized Reconfiguration
1MB 159ms | 166ms||(119ms 163ms | 167ms 122ms 186ms | 193ms 135ms
64MB 5.80s | 5.76s ! 5.71s 5.88s ! 5.98s | 5.82s 6.92s ! 6.73s l 6.74s
1 1 1 1 1 1

TABLE II: READ Operation - Reconfigurations - S:11, W:1, R:10:, G:4

* PB version has the worst latency, since transfers data and config in 11 round trips.

* PB with GC is fastest, since it updates pointers reducing actions.

* CoARESF & Larger Objects (64MB): No differences between versions since the first block finds the latest
config and the next block starts from that config.

Scenario 2:

e Original vs. PB has similar performance with one extra round trip.

* PB with GC is faster, skipping every 4 configurations, fewer rounds needed.

Andria Trigeorgi

Defence - UCY 2025

75

e Used tracing to pintpoint inefficiencies by monitoring individual
procedures.

* Develop optimizations, leading to ARES II.

* Show the correctness of ARES Il and conduct performance evaluations to
showcase its improvements over ARES.

* Distributed tracing is crucial for diagnosing and resolving performance
issues in DSM algorithmes.

Optimization Strategies

* Piggy-backing: Integrating configurations with read/write messages to expedite
configuration discovery.

. Garbage Collection: Eliminating obsolete configurations for quicker access to the
latest data.

* Data Batching: A single reconfiguration across multiple objects to enhance efficiency.

Andria Trigeorgi Defence - UCY 2025 76

Conclusion

* CoBFS has the following advantages:
* High Concurrent accesses
* Strong Consistency
 Large file size (tested up to 1GB file)

* CoARESF has the following advantages:

e the first dynamic DSM with coverable fragmented objects & 2-Level of Striping
* Optimized for High Concurrent accesses

* Theoretical principles illustrated by extensive experimental evaluation

e atomic consistency, data striping, erasure coding, access to the same files under
heavy concurrency, fault-tolerance, reconfiguration

Andria Trigeorgi Defence - UCY 2025 77

Ongoing and Future Work

* Design Reconfiguration Orchestration Strategies (ROS) for dynamic DSM
* When to invoke reconfigurations
* How to reconfigure
* Ensure that the system remains operational despite server failures.
* Improve performance by replacing older servers with more powerful ones.

* Server Failure Prediction lllllli!l

* Monitor environmental parameters of servers (performance, capacity, availability, and health).

* Threshold-based approaches for determine when to reconfigure.
* Predict failures using Machine Learning.

* Develop, Deploy, and Evaluate Web Platform

* Deploy and get access to configurations of DSM with ROS support by specifying servers.

* Manage existing configurations.

* Get access to existing configuration for reading and writing data objects either through the platform directly or through a third-party

application using appropriate security tokens.
* Fully-functional Distributed Storage System with Security Guarantees

* Extensive Experimental Evaluation

* Compare CoARESF against commercial solutions that employ a striping method.

* Integrate any commercial solution into CoBFS.

Andria Trigeorgi Defence - UCY 2025

Edit adsm instance : DSMid 12 [l

Edit adsm instance : DSMid 20 [[EEg)

X 188.245.251 206

Publications

Journal Articles

1. Ares: Adaptive, reconfigurable, erasure coded, atomic storage. N. Nicolaou, V. Cadambe, N. Prakash, A. Trigeorgi,
K. M. Konwar, M. Medard, and N. Lynch. Journal of ACM Trans. Storage 2022.

2. Boosting Concurrency and Fault-Tolerance for Reconfigurable Shared Large Object. A. F. Anta, C. Georgiou,
T. Hadjistasi, N. Nicolaou, E. Stavrakis, and A. Trigeorgi. Under Submission 2024.

Articles in Conferences

3. Robust and strongly consistent distributed storage systems. A. Trigeorgi. In Proc. of RCIS 2021.

4. Fragmented Object : Boosting Concurrency of Shared Large Objects. A. Anta, C. Georgiou, N. Nicolaou, T. Hadjistasi,
E. Stavrakis, and A. Trigeorgi. In Proc. of SIROCCO 2021.

5. Fragmented ARES: Dynamic Storage for Large Objects. C. Georgiou, N. Nicolaou, A. Trigeorgi. In Proc. of DISC 2022.
(arXiv:2201.13292)

6. Invited paper: Towards Practical Atomic Distributed Shared Memory: An Experimental Evaluation. A. Trigeorgi,
N. Nicolaou, C. Georgiou, T. Hadjistasi, E. Stavrakis, V. Cadambe and B. Urgaonkar. In Proc. of SSS 2022.
7. Robust and Consistent Distributed Storage as a Service. A. Trigeorgi. In Proc. of GEC 2024.

8. Tracing the Latencies of Ares: A DSM Case Study. C. Georgiou, N. Nicolaou, and A. Trigeorgi. In Proc. Of ApPLIED
2024.

9. Ares II: Tracing the Flaws of a (Storage) God. C. Georgiou, N. Nicolaou, and A. Trigeorgi. In Proc. Of SRDS 2024.

Andria Trigeorgi Defence - UCY 2025 79

Acknowledgments

Collaborators:
* Prof. Chryssis Georgiou, University of Cyprus (Supervisor)
* Dr. Nicolas Nicolaou, Algolysis Ltd
 Dr. Efstathios Stavrakis, Algolysis Ltd
e Prof. Antonio Fern"'andez Anta, IMDEA Networks
* Dr. Theophanis Hadjistasis, Algolysis Ltd

Examination Committee:
* Prof. Anna Philippou, University of Cyprus
* Assoc. Prof. George Pallis, University of Cyprus
* Prof. Gregory Chockler, University of Surrey, UK
* Assoc. Prof. Herodotos Herodotou, Cyprus University of Technology

Andria Trigeorgi Defence - UCY 2025 80

Thank you!

For more information you can see the websites of our related projects:

Related Projects

 PHD IN INDUSTRY/1222/0121

 DUAL USE/0922/0048

* POST-DOC/0916/0090

* EU’s NGIAtlantic.eu cascading grant agreement no. OC4-347

Andria Trigeorgi Defence - UCY 2025 82

CORRECTNESS

Data Access Primitives (DAPs)

e Operation Ordering: logical tags T =< ts, wid >

* For a configuration ¢, any client p may invoke any of the following DAPs:
* D1. c.get —tag():returnsatagt € T
e D2. c.get —data():returns a tag — value pair (t,v) €T X V
e D3. c.put —data(< 7,v >):the tag — value pair(t,v) € T X V asargument

* Property 1: DAP consistency conditions
« C1:if a put-data(<t,v>) precedes a get-data/get-tag operation that returns 7', thent’ > 7

e C2:if a get-data returns <7',v'>, then there exists put-data(<t’,v'>) that precedes or is
concurrent to the get-data operation

DAP-ABD and DAP-EC satify Property 1

Correctness of COARES

CoARES implements a linearizable coverable object, given that the DAPs
implemented in any configuration c satisfy DAP Consistency Conditions.

Proof challenges: COARES satisfies coverability despite any
reconfiguration in the system.

* New values are not overwritten (by writes associated with
older versions)

* Versions are unique

* Eventually a single version path prevails

Andria Trigeorgi Defence - UCY 2025 85

Correctness of COARESF

CoARESF implements a linearizable coverable fragmented object.

Proof challenges

* f remains connected and composed of the most recent
blocks, despite concurrent read/write and reconfig
operations

* Each block may exist in different configurations and be
accessed by different DAPs

* Show that fragmented linearizable coverability cannot be
violated

Andria Trigeorgi Defence - UCY 2025 86

From ARES to ARES I

* Piggy-backing: Integrating configurations with read/write
messages to speed up configuration discovery.

* Garbage Collection: Eliminating obsolete configurations for
quicker access to the latest data.

e Data Batching: A single reconfiguration across multiple objects to
enhance efficiency.

Correctness of ARES |l

* The correctness of ARES Il depends on the correct implementation of
both EC-DAP Il and the Reconfiguration protocol.

Correctness of EC-DAP Il

Revised Property 1 to accommodate the fact that get-data can
return a tag associated with either a value from V or 1.

Proof Challenges

* Tag Guarantee: get-data() always returns a tag > any previous put-
data().

 Value Origin: Values from get-data() come from put-data(), the initial
value, or L (due to garbage collection).

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 89

Reconfiguration Protocol Properties

heorem

For completed actions 1 and 2, where 1l — n2:
a. Configuration Uniqueness

b. Subsequence

c. Sequence Progress

Proof Challenges
* All processes must have the same config at index k.
* Next configs must point to a higher index than the current one.

e Future actions must start from a config at or above the last finalized
config.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

90

Atomicity

ARES II guarantees atomicity, given that the DAPs implemented in
any configuration c satisfy Property 1 and satisfy the
reconfiguration properties.

Proof Challenges

* Ensure get-data returning 1L does not prevent the read operation from
retrieving a valid non-L value.

* The read operation must continue until it finds a finalized (not GC) config
with the highest tag with a non-1 value.

* Batching must behave like multiple reconfigurations, maintaining the
correctness of read/write operations.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 91

Correctness of EC-DAP |

Revised Property 1: DAP consistency conditions
C1: if a put-data(<z,v>) precedes a get-tag (or get-data)
operation that returns T’ (or <t’,v’>/ <t’,1>), then 7' > 1
C2: if a get-data returns <t’,v'> or <t’, 1>, then there exists
put-data(<t’,v'>) that precedes or is concurrent to the get-
data operation

Proof Challenges

* The tag returned by get-data() is guaranteed to be > the tag from any
prior put-data().

 Values returned by get-data() are either from a put-data() operation,
the initial object value, or 1L (due to garbage collection).

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 92

Reconfiguration Protocol Properties

heorem

For completed actions 1 and 2, where nl — n2:

a. Configuration Uniqueness: Configuration sequences in any two
processes are identical at any common index i.

b. Subsequence: The configuration sequence x observed by ntl is
a subsequence of the sequence y observed by 12, i.e. A(x)<A(y).

c. Sequence Progress: Finalized configurations progress in order.

Proof Challenges

* Must have the same configuration at index k, regardless of how they received it
(propose operation or DAP/read-config)

* If the last configuration has index k, subsequent configurations with index j must
have a nextC pointing to a configuration with index i>j+1.

* If the last finalized configuration has index k, future actions must start from a
configuration with index j such that j>k.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 93

Atomicity

ARES II guarantees atomicity, given that the DAPs implemented in
any configuration c satisfy Property 1 and satisfy the
reconfiguration properties.

Proof Challenges

* Ensure that get-data returning L does not prevent the read operation from
retrieving a valid non-1 value.

* The read operation must continue until it finds a finalized configuration
that is not garbage collected, yielding the highest tag with a non-L value.

e Batching is indistinguishable from multiple reconfigurations, ensuring the
correctness of read/write operations.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 94

EXTRA SLIDES

(2 1vl striping)

I 'al a . .
: Data__ . Consistency - Data Non-blocking
g&)l%?glntlhm/ scalability aC%clfcsSrren cy guarantees Versioning Striping Reconfic
YES
concurrent
GFS YES appends relaxed YES YES (short .
- downtime)
files restrict one | atomic
HDFS YES writer at a time | (centralized) NO YES YES
Tunable
YES YES default= YES NO NO
Cassandra gventual)
YES creeggg(_ tual YES YES N/A
Dropbox g(())gi elS ing eventua /
concurrent
Colossus YES appends relaxed YES YES YES
atomic
Blobseer YES YES (centralized) YES YES YES
files restrict one :
Tectonic YES Writer at a_time read-after-write | YES YES YES
CoABD NO NO atomic YES NO NO
CoBFS (using ABD)| YES YES atomic YES YES NO
LDR YES NO atomic NO NO NO
RAMBO/DYNASTORE | N NO atomic NO NO YES
SMSTORE/SPSNSTORE
ARESABD NO NO atomic NO NO YES
ARESEC NO NO atomic NO YES YES
COARESABDF YES YES atomic YES YES YES
. YES
COARESECF YES YES atomic YES YES

Distributed Storage Systems

Data Data Consist. A Data Non-blocking
System scalability access Concurr. guarantees Versioning Striping Reconfig.
GFS YES concurrent relaxed YES YES YES .
appends (short downtime)
Colossus YES concurrent relaxed YES YES YES
appends
files restrict one | atomic
HDFS YES writer at a time centralized NO YES YES
tunable
CASSANDRA YES YES YES NO NO
(default= eventual)
DROPBOX YES creates . eventual YES YES N/A
conflicting copies
REDIS YES YES eventual YES NO NO
BloBsEER YES YES atomic YES YES YES
centralized
TECTONIC YES files restrict one Read-your- writes YES YES YES

writer at a time

Andria Trigeorgi

Comprehensive - UCY 2022

97

CASSANDRA

What is Cassandra? a key-value Distributed Database.

Why Cassandra? availability, high performance, horizontal scalability.

How it works? Gossip protocol, Peer-to-peer communication in a Ring topology.

Tunable Consistency = number of nodes to acknowledge an operation
(default=Eventually). Can support strong consistency.

Tunable Replication Factor (# of copies).

We set RF=n, CL=majority (n/2+1) - atomic
ApacheCassandra™= NoSQL Distributed Database

1 Installation =1 NODE
v’ Capacity + 1TB
v’ Throughput: 3000 Tx/sec/core

DataCenter | Ring

Communication:
v/ Gossiping

Cassandra, https://cassandra.apache.org/ /index.html 98

REDIS

* What is Redis? Ultra-fast in-memory key-value store. Used as database,
cache, and for simple apps.

* It has memory limitations.

 “WAIT” command for synchronous replication
(We set a majority (n/2 + 1) of waiting write acks).

* |t provides Eventual consistency.

* Replication: Master ensures that one or more slaves becomes exact copies of it.
Clients can connect to the master or to the slaves. Slaves are read only by default.

Master
Replica

® $

Replica

Async
Redis, https://redis.io

99

* Block size of FM. data striping performance highly depends on the
block size.

* Parity of EC. the further increase of the parity (and thus higher
fault-tolerance) the larger the latency.

* Parameter 6 of EC. 6 = #writers & each server sends 6 + 1
concurrent values in the first phase—> as the #writers increases, the
latency also increases

Andria Trigeorgi Proposal - UCY 2023 100

Participation Scalability

StartReadRequest-MEMORY (3.77s)]
Phasel (3.58s) S -
ReadConfig (23.78ms) | 23.7Bms
GetData (3.53s) A -
CommunicationLatency (3.53s) L JK
findTag_in_k_lists (65pus) 65ps |
findMaxTagStar (30pus) B0ps |
findMaxTagVal_in_k_lists (7.47ms) 7.47ms |
DecodeLatency (7.3ms) 7.3ms |
Phase2 (212.79ms) 212.79ms B
PutData (187.03ms) 187.02ms @
Encodelatency (7.42ms) 7.42ms |
CommunicationLatency (179.31ms) 179.31ms @
ReadConfig {25.45ms) 25.45ms |

ARESEC, S:3, W:5, R:50, fsize:4MB, Debug Level:DSMM

C. Georgiou, N. Nicolaou, A. Trigeorgi

StartReadRequest-MEMORY (955.56ms)]

Phasel (764.74ms) I 7.
ReadConfig (18.54ms) I 18.54ms
GetData (745.84ms) I 5.t

CommunicationLatency (71714ms) N 7.1

findTag_in_k_lists (86us) B6ps |l
findMaxTagStar (27us) 27us|l
findMaxTagVal_in_k_lists (27.95ms) 27.95ms | #

Decodelatency (27.73ms) 27.73ms |

Phase? (190.43ms) 190.43ms IR

PutData (170.25ms) 170.25ms N
Encodelatency (74.98ms) T4.98ms B

CommunicationLatency (94.94ms) 94.94ms @B

ReadConfig (19.83ms) 19,83ms 1

ARESEC, S:11, W:5, R:50, fsize:4MB, Debug Level:DSMM

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 101

Block Sizes

L
N 42.83ms
G 30.64ms

StartReadRequest-MEMORY (66.67ms)
Phasel (42.83ms)

ReadConfig (39.64ms)

GetData (2.88ms) 2.88ms @
CommunicationLatency (1.24ms) 1.24ms |
findTag_in_k_lists (27us) 27ps |
findMaxTagStar (19us) 19ps |
findMaxTagVal_in_k_lists (24us) 24ps |

23.46ms (HIEGEGD
23.33ms D

Phase2 (23.46ms)

ReadConfig (23.33ms)

CoAresECF, S:11, W:5, R:5, fsize:512MB, Min/Avg Block Size:2MB,
max Block Size:4MB, Debug Level:DSMM

C. Georgiou, N. Nicolaou, A. Trigeorgi

D
O

StartReadRequest-MEMORY (1.09s)
Phase1 (1.01s)

ReadConfig (28.53ms) } 28.53ms

GetData (982.65ms) L

CommunicationLatency (841.21ms) (G :/ 1.

findTag_in_k_lists (37us) 37us |

findMaxTagStar (18us) 18ps |

findMaxTagVal_in_k_lists (26us) 26ps |
Phase2 (74.2ms) 74.2ms @
ReadConfig (74.04ms) 74.04ms @

CoAresECF, S:11, W:5, R:5, fsize:512MB, Min/Avg Block Size:64MB,
max Block Size:128 MB, Debug Level:DSMM

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024 102

Longevity

StartReadRequest-MEMORY (568.45ms)

Phase1 (402.5ms) I 02.5ms

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

C. Georgiou, N. Nicolaou, A. Trigeorgi

StartReadRequest-MEMORY (108.53ms)

CoAresF, S:11, W:5, R:15, G=1,
fsize:4MB, Debug Level:DSMM

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

StartReconfigRequest-MEMORY (1.42s)

ReadConfig (180.35ms) I 160.35ms ReadConfig (5314"15) [] 53.14ms
GetData (14.03 0 14.03 Phase1 (54.89ms G -
etbata (14.05ms) e () 54.89ms AddConfig (520.35ms) R 570 35ms
CommunicationLatency (10.52ms) 1 10.52ms 5
_ ReadConfig (23.52ms) G)3 52ms UpdateConfig (846.36ms) 846.36ms
findTag_in_k_lists (33ps) | 33us
. . 1.
findMaxTagstar (219 I 218 GetData (31.08ms) G 31 05 Getbata (139ms) 1pems
findMaxTagVal_in_k_lists (30ps) | 30ps CommunicationLatency (1.02ms) I 1,02ms
CetData (64.99me) & b ooms CommunicationLatency (29.71ms) G 00 71ms MaxTagVal (34,s) | 34
Communicatlonl stancy (64.54ms) . 51.54mm findTag_in_k_lists (37us) | 37us GetData (75.04ms) @ 75.04ms
MaxTagVal (80ps) | 80us -
; CommunicationLatency (74.66ms) @ 74.66ms
GetData (56.03ms) & 56.03ms findMaxTagStar (20us) | 20ps
. tonL (55.65ms) - 5565 MaxTagVal (40us) | 40ps
ommunicationLatency bams bams f . o
indMaxTagVal_in_k_lists (899ps) 899us |
MaxTagVal (37s) arus|l GetData (43.72ms) 0 43.72ms
GetData (44.04ms) 44.04ms @B DecodeLatency (773us) 773us | CommunicationLatency (43.25ms) 8 43.25ms
CommunicationLatency (43.73ms) 43.73ms| B MaxTagVal (54us) | 54ps
_ Phase2 (53.32ms) 53,30 gval '
MaxTagVal (35us) 35ps | GetData (87.97ms) 87.97ms @
Getbatz (6155ms) 61.55ms S PutData (21'89ms) 21.89ms CommunicationLatency (87.49ms) 87.49ms @
CommunicationLatency (61.16ms) 61.16ms I
N MaxTagVal (41us 41ps
MexTagVal (47, e EncodeLatency (4.58ms) 4.58ms @ gVal (41ps) H
; g GetData (72.35ms) 72.35ms @
Phasa2 (165.58ms) 163.56ms CommunicationLatency (17.04ms) 17.04ms D
PutData (65.66ms) 65.66ms CommunicationLatency (71.98ms) 71.98ms @
CommunicationLatency (65.52ms) 65.52ms B Readconflg (233ms) 23.3ms] MaxTagVal (42ps) 42ps |
ReadConfig (97.06ms) 97.06ms R

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB,

Debug Level:DSMM

103

The Latencies of read-config and get-data.

StartReconfigRequest-MEMORY (1.01s)

QOO

config

config

config

config

config

data

C. Georgiou, N. Nicolaou, A. Trigeorgi

ReadCaonfig (55.85ms)
AddConfig (321.38ms)
UpdateConfig (625.26ms)
Phasel (551.1ms)
GetData (38.59ms)
GetData (28.12ms)
GetData (39.03ms)
GetData (39.41ms)
GetData (39.71ms)
GetData (32.78ms)
GetData (40.4ms)
GetData (32.21ms)
GetData (40.22ms)
GetData (32.22ms)
GetData (33.54ms)
GetData (32.29ms)
GetData (2.34ms)
Phase? (52.12ms)
PutData (47.57ms)

FinalizeConfig (1.71ms)

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

]
B 55.85ms
N 571 .38ms
§25.26ms G
551.1ms I

[1=]

B 3B.59ms

§ 2B.12ms

32.22ms 0
33.54ms B
32.28ms Wl
2.34ms |
52.12ms B
47.67ms B

{1ms

104

The Latencies of read-config and get-data.

-1

config config config config

config data

StartReadRequest-MEMORY 1stRead (134.13ms) IINEGEGIGNEEEEEEED

Phasel (88.53ms)

ReadConfig (55.56ms)

GetData (32.63ms)
CommunicationLatency (22.92ms)
findTag_in_k_lists (48us)
findMaxTagStar (25us)
findMaxTagWVal_in_k_lists (9.09ms)

Decodelatency (8.86ms)
Phase? (45.17ms)

PutData (42.95ms)

Encodelatency (20.1ms)
CommunicationLatency (22.56ms)

ReadConfig (1.6ms)

C. Georgiou, N. Nicolaou, A. Trigeorgi

I GF.55n
I 55.56ms
32.63ms D
22.92ms
48us 1
25us 1
9.09ms @
8.86ms @
45.17ms D
42.95ms N
20.1ms 0
22.56ms

1.6ms |

StartReconfigRequest-MEMORY (1.01s) I

ReadConfig (55.85ms)
AddConfig (321.38ms)
UpdateConfig (625.26ms)
Phasel (551.1ms)
GetData (38.59ms)
GetData (28.12ms)
GetData (39.03ms)
GetData (39.41ms)
GetData (39.71ms)
GetData (32.78ms)
GetData (40.4ms)
GetData (32.21ms)
GetData (40.22ms)
GetData (32.22ms)
GetData (33.54ms)
GetData (32.29ms)
GetData (2.34ms)
Phase? (52.12ms)
PutData (47.57ms)

FinalizeConfig (1.71ms)

ARES II: Tracing the Flaws of a (Storage) God — SRDS 2024

B 55.85ms
N G2 .38ms
625.26ms NG
551.1ms N
B 36.59ms
§ 2B.12ms
39.03ms @
39.41ms @
39.71ms @
32.78ms B
40/4ms @
32.21ms 0
40.22ms (@
32.22ms 0
33.54ms B
32.29ms 0
2.34ms |
52.12ms @
47.67ms B

1.71ms

105

	Slide 1: Dependable Distributed Shared Memory Suitable for Large, Strongly Consistent Objects
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: PART Ⅰ - Fragmented Objects: Boosting Concurrency of Shared Large Objects
	Slide 20
	Slide 21: Fragmented Objects: Boosting Concurrency of Shared Large Objects
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: PART Ⅱ - Implementation and Experimental Evaluation of ARES
	Slide 31
	Slide 32: ARES: Adaptive, Reconfigurable, Erasure coded, Atomic Storage
	Slide 33
	Slide 34: Configurations
	Slide 35
	Slide 36: Configuration Sequence
	Slide 37: Reconfiguration Service
	Slide 38: Read/Write Operations using DAPs
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Invited Paper: Towards Practical Atomic Distributed Shared Memory: An Experimental Evaluation Authors: Andria Trigeorgi1, Nicolas Nicolaou2, Chryssis Georgiou1, Theophanis Hadjistasi2, Efstathios Stavrakis2, Viveck Cadambe3, and Bhuvan Urgaon
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: PART Ⅲ - Fragmented ARES: Dynamic Storage for Large Objects
	Slide 50
	Slide 51: Fragmented ARES: Dynamic Storage for Large Objects Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: PART Ⅳ – Enhance the Performance of ARES
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: Tracing the Latencies of Ares: A DSM Case Study Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: ARES II: Tracing the Flaws of a (Storage) God Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: CORRECTNESS
	Slide 84: Data Access Primitives (DAPs)
	Slide 85
	Slide 86
	Slide 87: From ARES to ARES II
	Slide 88: Correctness of ARES II
	Slide 89: Correctness of EC-DAP II
	Slide 90: Reconfiguration Protocol Properties
	Slide 91: Atomicity
	Slide 92: Correctness of EC-DAP II
	Slide 93: Reconfiguration Protocol Properties
	Slide 94: Atomicity
	Slide 95: EXTRA SLIDES
	Slide 96
	Slide 97: Distributed Storage Systems
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Participation Scalability
	Slide 102: Block Sizes
	Slide 103: Longevity
	Slide 104: The Latencies of read-config and get-data.
	Slide 105: The Latencies of read-config and get-data.

