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Growth of the Digital Universe

• 1 ZB is 1021 bytes = the estimated number of stars in the universe!

“Growth of global data , 
rising from 26 ZB in 2017 to a 
projected 175 ZB by 2025.” 
- International Data 
Corporation (IDC) 

“The data in the digital universe 
doubles every two years.” 
- EMC Digital Universe 



Commercial Solutions:

• Often provide Weak Consistency guarantees (e.g., Dropbox)
• Limited concurrency (e.g., HDFS - one writer at a time)
• Often rely on centralized solutions to provide strong consistency​ (e.g., HDFS)

• Drawback: Performance Bottleneck 

• They do not provide rigorously  provable guarantees
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Distributed Storage Systems (DSS)



Implementing a fault-tolerant shared object in an asynchronous,  message-passing 
environment: 

• Availability + Survivability => use redundancy

• Asynchrony + Redundancy => concurrent operations

• Behavior of concurrent operations => consistency semantics

− Safety, Regularity, Atomicity (Atomic DSMs) [Lamport 1986]
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Shared read/write object

Servers / Replica hosts

Distributed Shared Memory Emulations (DSMs)

L. Lamport,“On Interprocess Communication,” Distributed Computing, vol. 1, no. 2, pp. 77–101, 1986. 



• Provides the illusion that operations happen in a sequential order

• a read returns the value of the preceding write

• a read returns a value at least as recent as that returned 
by any preceding read
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Writes

Read 1

Read 2

Read 3

*

*

*

*

time

M. Herlihy, J. Wing, “Linearizability: a correctness condition for concurrent objects,” ACM TOPLAS 12(3), 463–492 (1990).

Atomicity/Linearizability

[Herlihy, WIng 1990]

*



[Attiya, Bar-Noy, Dolev 1995]
             *Dijkstra Prize 2011*

Extended by Lynch and Schwarzmann

 in 1997 for MWMR, assigning tags <ts,wid> – MW-ABD

Fault tolerance & Consistency Guarantees have been rigorously proved
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H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing Memory Robustly in Message-Passing Systems,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 124–142, 1995. 
N. Lynch, A. Shvartsman.. “Robust emulation of shared memory using dynamic quorum-acknowledged broadcasts,” In Proc. of FTCS pp. 272–281 (1997).

• SWMR atomic registers

• S servers,  f < n / 2

• 1 writer

• R readers
v0, 0

v1, 1

v1,1

write(v, 1)

write(v, 1)
read()

read()
v1, 1 

write(v1, 1)

read(v1, 1)

An elegant, intuitive solution that
• uses the power of the majority, and

• assigns logical timestamps to written values for ordering the operations.

Seminal Algorithm - ABD
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Phase1: Query - Discover maximum tag and associated value

READ Protocol of MW-ABD

<tag,value>

from majority

Compute maxTag

Andria Trigeorgi Defence - UCY 2025
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READ Protocol of MW-ABD

Phase 2: Propagate <maxTag,value> 

8

ACK

from majority

Read completes

Returns the latest value

Andria Trigeorgi Defence - UCY 2025

Update <tag, value>
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WRITE Protocol of MW-ABD

Phase1: Query - Discover maximum tag 

9

tag 

from majority

Compute maxTag

Set newTag =<maxTs+1, wid>

Andria Trigeorgi Defence - UCY 2025
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Phase 2: Write <newTag, newValue>

WRITE Protocol of MW-ABD

ACK

from majority

Write completes

Update <tag, value>

Defence - UCY 2025



• Many DSMs, for both static (fixed servers) and dynamic 
(remove/add servers) systems, were developed over the years.

• These protocols are:
• efficient for small objects
• expensive solutions that are difficult to implement in an 

asynchronous, fail prone, message passing environment.

• Limitation 1: No enforced dependence between versions of the 
object [versioning]

• Limitation 2: Unable to handle write operations working on different 
parts of a large object [striping]
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Handling Large Objects 



• Versioned object: a R/W object where each value written is associated with a 
version (= tag)

• Coverability is defined over a totally ordered set of versions, and extends 
linearizability by guaranteeing that:

• A write on the object succeeds only when the write is associated with the 
latest version of the object. Otherwise, it becomes a read operation (to 
obtain the latest version) 

• CoABD: Modified MW-ABD that guarantees coverability
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Versioning and Coverability

N. Nicolaou, A. Ferna ńdez Anta, and C. Georgiou, “Coverability: Consistent Versioning in Asynchronous, Fail-Prone, Message-Passing Environments,” in Proc. of 
IEEE NCA 2016, IEEE, 2016. 

[Nicolaou, Anta, Georgiou 2016]



• Concurrent write operations may overwrite one another

• In some cases this is unavoidable. But what if two changes take place 
on different parts of a large file?
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Concurrent Access on Large Objects



The development of an efficient Distributed Shared 
Memory that provides provable atomic consistency 

guarantees and high access concurrency at large scale 
under an asynchronous, crash-prone, distributed and even 

dynamic environment. 
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Ultimate Objective
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Methodology
1. Implemented the most efficient Atomic Shared Object Algorithm. 

2. Specified a Data Fragmentation Strategy. 

3. Designed and implemented the framework of our system, and introduce new      
consistency guarantees. 

4. Implemented ARES to introduce a dynamic solution. 

5. Combined our Fragmentation Strategy with ARES. 

6. Evaluated our implementation against commercial solutions. 

7. Deployed and evaluated the system in network testbeds (Emulab, AWS, Fed4FIRE+)         

8. Identified any performance bottlenecks using distributed tracing and optimized them. 

Defence - UCY 2025
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System Settings

To implement an atomic constistent DSM that:

• supports large shared R/W objects

• with two main distinct sets of processes: a set C of clients and 
a set S of servers

  (Configuration = the set S of servers and some additional info)
• Fixed Configuration -> Static environment
• Reconfiguration -> Dynamic environment

• C = a set W of writers, a set R of readers, and a set G of 
reconfigurers

Defence - UCY 2025



Basic Arcitectures

Andria Trigeorgi 17Defence - UCY 2025
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Evaluation Setup

Testbeds

 Emulab: a network testbed with tunable and controlled  environmental 
 parameters.

 AMAZON Web Services (AWS) EC2: a web service that provides  scalability 
and performance.

 Fed4FIRE+: a federation of testbeds.

Performance Metric
• Average Operation latency of all clients (Communication + Computation 

Overhead).

• Update/Write Success Ratio



PART Ⅰ - Fragmented Objects: 
Boosting Concurrency of Shared 

Large Objects

covering Stages 1-3, 7 in Methodology 

19Andria Trigeorgi Defence - UCY 2025
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Approach and Contribution

• Define concurrent objects: (i) the block object, and (ii) the 
fragmented object. 

• Define the consistency that the fragmented object provides 
(fragmented coverable linearizability).

• Implement CoBFS, a Framework which implements the 
fragmented objects.

• Performed an experimental evaluation of CoBFS on Emulab. 



Fragmented Objects: Boosting Concurrency of 
Shared Large Objects

Andria Trigeorgi Defence - UCY 2025 21

Antonio Fernández Anta 1 Chryssis Georgiou 2

Theophanis Hadjistasi 3 Nicolas Nicolaou 3 Efstathios Stavrakis 3

Andria Trigeorgi 2

1 IMDEA Networks Institute, Madrid, Spain
2 University of Cyprus, Nicosia Cyprus
3 Algolysis Ltd, Limassol, Cyprus

SIROCCO 2021



Andria Trigeorgi Defence - UCY 2025 22

Each object is fragmented into blocks 

• Allows big amounts to be distributed all over the servers
• Avoids contention for concurrent accesses to different blocks

Solution: Fragmentation



• Fragmented object

• Each f is a list of blocks

• Each block has the id of its next block

• Each block is linearizable and coverable

• The first block is the genesis block bgen

• Write Operation write(f)

• Propagate only modified and new blocks

• Read Operation read(f)

• Start from bgen and read all the blocks

Andria Trigeorgi Defence - UCY 2025 23

Solution: Fragmentation



(a) Linearizability on the whole object (b) Fragmented Linearizability

Fragmented Coverable Linearizability guarantees that all concurrent operations on

different blocks prevail, and only concurrent operations on the same blocks are conflicting.

A. Fernández Anta et al. SIROCCO 2021

14/ 26

Fragmented Coverable Linearizability

Andria Trigeorgi Defence - UCY 2025 24
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CoBFS Framework



Read Operation

• FM issues dsmm-read for each block 

• crv-read executes the read operation on DSMM

• CoABD Optimization: Only blocks that have changed are transferred 

Update Operation

• FM divides objects into blocks <D0,…,Dk> using Block Identification (BI)

• FM updates each block with its corresponding data
• If k=0: dsmm-write is used
• If k>0: New blocks are created using dsmm-create, modified blocks are written using 

dsmm-write, and block pointers are updated
• Block Operations: Sequential creation and write operations for chunks of data

• The block operations are executed using cvr-write on the DSMM

CoABD-F: Integration of CoABD with CoBFS

Andria Trigeorgi Defence - UCY 2025 26
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CoABD VS. CoABD-F (Emulab)

File Size:

• the update latency of COABD-F remains at extremely low levels, although the file size 
increases.

• a read optimization decreases significantly the COABD-F read latency, since it is more 
probable for a reader to already have the last version of some blocks.
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Overview of Results

• COABD-F has significantly lower write and read operation 
latency (especially in larger files)

• For the read operation latency of smaller sizes (1MB), 
suggest that there is room for improvement

• Trade-off between block size, operation latency and write 
success rate

• …



• CoABD-F implements a Robust, Strongly-consistent DSM in an 
asynchronous message-passing system and supports Versioning, Data 
Striping, and High Access Concurrency for Large Objects

• Next Goal: Obtain such as DSM for Dynamic systems, where servers 
(replica hosts) change over time, without interrupting the read/write 
operations or violating data consistency

Andria Trigeorgi Defence - UCY 2025 29

Recap and Next Goal

static



PART Ⅱ - Implementation and 
Experimental Evaluation of ARES 

covering Stages 4 & 6, 7 in Methodology 

30Andria Trigeorgi Defence - UCY 2025



• Implement ARES to enable dynamic reconfiguration.

• Performed an experimental evaluation of ARES on Emulab. 

• Set up two open-source commercial solutions (Redis and Cassandra) 
to compare them with ARES.

• Performed experiments in real testbeds (supported by Fed4FIRE+ 
project), distributed in the European Union (EU) and the USA. 

31Andria Trigeorgi Defence - UCY 2025

Approach and Contribution



ARES: Adaptive,  Reconfigurable,  Erasure 
coded, Atomic Storage

Andria Trigeorgi Defence - UCY 2025 32
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33N. Nicolaou, V. Cadambe, N. Prakash, A. Trigeorgi, K. M. Konwar, M. Medard, and N. Lynch, “Ares: Adaptive, reconfigurable, erasure coded, atomic storage,” ACM 
Trans. Storage, jan 2022.  

ARES

Reconfiguration 
Service

Read/Write 
protocol

DAPs for each 
configuration

masks host failures by adding/removing servers, 
and switches between storage algorithms (DAPs)

define the exact methodology 
to access the object
 ABD-DAP: uses ABD to access 
the object replicas
 EC-DAP: uses an erasure 
coded based DSM  

DAP-based abstract 
Read/Write specifications

ARES (MWMR) - Adaptive, Reconfigurable, Erasure Code, Atomic Storage 

[Nicolaou et al 2022]



Configurations

• A configuration c is characterized by:
• A unique identifier 
• A set of servers
• A quorum set system on servers
• A consensus instanse
• A DAP implementation

• D1.   𝑐. 𝑔𝑒𝑡 − 𝑡𝑎𝑔  : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 𝜏 ∈  Τ
• D2. 𝑐. 𝑔𝑒𝑡 − 𝑑𝑎𝑡𝑎  : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 − 𝑣𝑎𝑙𝑢𝑒 
 𝑝𝑎𝑖𝑟 𝜏, 𝑣  ∈ Τ ×  𝑉
• D3.   𝑐. 𝑝𝑢𝑡 − 𝑑𝑎𝑡𝑎 < 𝜏, 𝑣 > :  the tag − value 
 pair 𝜏, 𝑣  ∈ Τ ×  𝑉 as argument
• ABD-DAP & EC-DAP

34

S1

S2

S3

Q1
Q2

Q3

Propose(c) Decide(c)

Consensus

Get-data/tag() Put-data(<t,v>)

DAPs

Andria Trigeorgi Defence - UCY 2025



(n, k)-Reed-Solomon code: n=servers, k=data servers, m=parity servers
BUT reads and writes are still applied on the entire object

35

ARES (MWMR) - Adaptive, Reconfigurable, Erasure Code, Atomic Storage 

Andria Trigeorgi Defence - UCY 2025

Original 
Object

Original 
Object



Configuration Sequence

• Global configuration sequence GL

• nextC: each server points to the next configuration
• Same nextC to all servers of a single config c (due to consensus)

• Flags {P, F}: pending, finalized
• Pending: not yet a quorum of servers received msgs

• Finalized: new configuration propagated to a quorum of servers

36

⏊  c0

CN0 Q0

nextC =(c1, F)

c1

CN1 Q1

nextC =(c2, P)

c2

CN2 Q2

nextC =(     ,    )⏊  ⏊  

Andria Trigeorgi Defence - UCY 2025



Reconfiguration Service

• A reconfig operation performs 2 major steps:
1) Configuration Sequence Traversal

2) Configuration Installation
• Transfers the object state from the old to the new configuration

37

attempt get to the latest configuration 

introduce the new configuration 

move the latest value to the new config

let  servers know it is good to be finalized 

(1)

(2)

This service guarantees that if cseq1 and cseq2 are obtained by two clients resp., 
then either cseq1 is a prefix of cseq2 or vice versa   

Andria Trigeorgi Defence - UCY 2025



Read/Write Operations using DAPs

38

Reader Protocol
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
  (t,v)=max(cseq[i].get-data())
• Do

• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

Writer Protocol(val) (at wi)
• Traverse Config Sequence cseq
• Find μ = max(<c, F>) in cseq
• Set ν = last(<c,*>) in cseq
• Discover for μ ≤ i ≤ ν
  tmax=max(cseq[i].get-tag())
• (t,v)= (<tmax+1,wi>, val)
• Do

• cseq[ν].put-data(t,v)
• Traverse Sequence cseq

• while(|cseq| > ν)

Andria Trigeorgi Defence - UCY 2025
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File Size (Emulab)

• the read and write latencies of both storage algorithms remain in low levels until 16 MB

• the write operation of EC algorithm is the faster

• the larger messages sent by ABD result in slower read operations

Andria Trigeorgi Defence - UCY 2025
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K Scalability (Emulab)

• small k (=smaller number of  data fragments) → bigger sizes of the fragments and higher redundancy.

• The write latency seems to be less affected by the number of k since the first phase of write asks only for the tag

Andria Trigeorgi Defence - UCY 2025
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• The write operation of ARES_EC algorithm is the faster 
(especially in larger sizes)

• The larger messages sent by ARES_ABD result in slower read 
operations

• Reconfiguration (server failures & changing DAPs). 

• The reconfiguration operation is the slower

• Trade-off between operation latency and parity of EC

• Trade-off between operation latency and the number of 
writers

Overview of Results
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Main Objective

• Primary Limitation: Expensive DSMs that are difficult to implement in 
an asynchronous, fail prone, message passing environment.

• Recent works: Reduce high communication, storage, and computation 

overheads (CoBFS, ARES)

How may such algorithms compare to commercially used solutions? 

Andria Trigeorgi Defence - UCY 2025
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Comparative Table

Algorithm
Consistency
guarantees

Data Striping
Non-Blocking
Reconfiguration

MWMR ABD Atomic NO NO

AREs-ABD Atomic NO YES

AREs-EC Atomic YES YES

CASSANDRA
Tunable
(eventual/atomic) NO

NO
(A single server at a 
time)

REDIS/REDIS_W Eventual NO NO

Andria Trigeorgi Defence - UCY 2025
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Stress Test – Topology (Fed4FIRE+)

Andria Trigeorgi Defence - UCY 2025
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Stress Test – Object Size (Fed4FIRE+)

Andria Trigeorgi Defence - UCY 2025



• ABD & ARES scale better than Cassandra.

• ARES_EC outperforms Cassandra in larger objects.

• ARES has non-blocking reconfiguration mechanism (server 
failures & changing DAPs). 

• The topology played a major role on the performance 
(throughput), of all the algorithms we studied. 

• Verify the fault-tolerance and the responsiveness of ARES. 

• ARES trades performance over consistency with respect to 
Redis.

47

Overview of Results

Andria Trigeorgi Defence - UCY 2025



• ARES
• provable guarantees

• Operations compete closely/outperform existing DSS solutions (even when 
offering weaker consistency guarantees). 

• Results
• Data repository: https://github.com/nicolaoun/ngiatlantic-public-data

• Graphs: https://projects.algolysis.com/ares-ngi/results/

• Next Goal
• Integrate the dynamic (reconfigurable) DSM algorithm ARES with the DSM 

module in CoBFS → CoARESF  

48

Recap and Next Goal

Andria Trigeorgi Defence - UCY 2025
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PART Ⅲ - Fragmented ARES: 
Dynamic Storage for Large 

Objects 

covering Stages 5, 7 in Methodology 

49Andria Trigeorgi Defence - UCY 2025
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Part Ⅲ - Approach and Contribution

• Integrate the dynamic (reconfigurable) DSM algorithm ARES with the DSM 
module in CoBFS ⇨ CoARESF  

• In order to integrate ARES in CoBFS, we first needed to obtain a coverable 
version of ARES ⇨ CoARES

• Performed an in-depth experimental evaluation over Emulab and AWS 
comparing the different versions (with/out fragmentation, with/out EC, 
with/out reconfiguration).

Andria Trigeorgi Defence - UCY 2025



Fragmented ARES: 
Dynamic Storage for Large Objects

Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1

1University of Cyprus, Nicosia, Cyprus
2Algolysis, Limassol, Cyprus

 DISC 2022
 Augusta, GA, USA
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CoARES

Andria Trigeorgi Defence - UCY 2025

version: the 
tag of the 
coverable 
object

flag: chg when 
the write is 
successful 

Query phase: 
find the max 
tag-value pair

Main difference:  
the condition 
“the writer has 
the latest 
version?” 

It updates 
the state of 
the object! It keeps the max tag!

Difference: it 
returns both the 
value and the 
version  
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CoARESF

• Integrate CoARES with CoBFS

• Main challenge: Enable the fragmentation approach to  invoke 
reconfiguration operations reconfig(c)f

CoARES

reconfig(c)b0reconfig(c)b1reconfig(c)b2

Andria Trigeorgi Defence - UCY 2025



ARESABD This is Ares that uses the ABD-DAP implementation.

CoARESABD The coverable version of ARESABD.

CoARESABDF The fragmented version of CoARESABD.

ARESEC This is ARES that uses the EC-DAP implementation.

CoARESEC The coverable version of ARESEC.

CoARESECF This is the two-level data striping algorithm obtained when CoARESF is used with the EC-DAP 
implementation; i.e., it is the fragmented version of CoARESEC.

ARES VERSIONS

54Andria Trigeorgi Defence - UCY 2025
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File Size (Emulab) 
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File Size (AWS) 

Andria Trigeorgi Defence - UCY 2025
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• Fragmented algorithms have significantly lower write 
operation latency both in Emulab and AWS

• For the read operation latency, AWS results of CoARESF 
suggest that there is room for improvement

• EC-based algorithms are the most scalable as the servers 
increase 

• Trade-off between block size, operation latency and write 
success rate

• Trade-off between operation latency and the parity of EC

• Trade-off between operation latency and the number of 
writers

Overview of Results
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Recap

• Presented and proved correct CoARESF, the first Dynamic, Robust, 
Strongly-consistent DSM that supports Versioning, (2-level) Data 
Striping, and High Access Concurrency for Large Objects

• Data available at  https://github.com/atrigeorgi/fragmentedARES-
data.git

Andria Trigeorgi Defence - UCY 2025
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PART Ⅳ – Enhance the 
Performance of ARES

covering Stages 7-8 in Methodology 

59Andria Trigeorgi Defence - UCY 2025
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Part Ⅳ - Approach and Contribution

• Identify flaws in DSMs using Distributed Tracing.                                                                  
We demonstrate this through the ARES DSM.

• Develop optimizations based on the found bottlenecks.

• The correctness of optimized ARES is rigorously proven.

Andria Trigeorgi Defence - UCY 2025



• Identifying performance bottlenecks in complex DSMs can be 
challenging

• Traditional logging techniques may not provide sufficient insight

Performance Analysis Challenges in DSMs

61Andria Trigeorgi Defence - UCY 2025



“Distributing Tracing is a monitoring technique used to track individual 

requests as they move across multiple components within a distributed 

system. It helps to pinpoint where failures occur and what causes poor 

performance.”

62Andria Trigeorgi Defence - UCY 2025



• A trace represents the entire journey of a request.

• A span represents a unit of work within a trace (e.g., procedures, 
sections of code).

• Tracings tools: Opentemetry, Zipkin, Jaeger.  

Spans

Trace

63

Distributed Tracing – Terminology 

Andria Trigeorgi Defence - UCY 2025



Tracing the Latencies of Ares: 
A DSM Case Study 

Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048 

1University of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

 ApPLIED 2024, Nantes, France
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Methodology: ARES Distributed Tracing  

Andria Trigeorgi Defence - UCY 2025



CoARESECF, S:11, W:5, R:5, init fsize:512MB, Debug Level:DSMM ARESEC, S:11, W:5, R:5, fsize:512MB, Debug Level:DSMM 

File Size  

66Andria Trigeorgi Defence - UCY 2025



ARESEC, S:3, W:5, R:50, fsize:4MB, Debug Level:DSMM ARESEC, S:11, W:5, R:50, fsize:4MB, Debug Level:DSMM 

67

Participation Scalability 

Andria Trigeorgi Defence - UCY 2025



CoAresF, S:11, W:5, R:15, G=5, fsize:4MB, 

Debug Level:DSMM 

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB, 

Debug Level:DSMM 

68

Longevity 
 

Andria Trigeorgi Defence - UCY 2025



ARES II: 
Tracing the Flaws of a (Storage) God 

Authors: Chryssis Georgiou1, Nicolas Nicolaou2, Andria Trigeorgi1,2

Funded by: PHD IN INDUSTRY/1222/0121 and DUAL USE/0922/0048 

1University of Cyprus, Nicosia, Cyprus

2Algolysis, Limassol, Cyprus

 SRDS 2024, Charlotte, USA
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Main difference: 
skip read-config 
for latest config

Query phase: 
embed latest 
configs with data

Extra function: 
discover the 
next config

Optimisation 1: Piggybacking
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requests max τ
and nextC in one go

returns max τ
and servers’ nextC

requests data list 
and nextC

If nextC is finalized, servers sends 
only the tag and their nextC

returns all 
servers’ nextC

requests data update 
and nextC

Optimisation 1: Piggybacking – EC-DAP
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send GC 
request to 
servers 

Last finalized config

older configs from last 
finalized config 

Remove the 
GC configs

EC-DAP

server updates nextC to point 
to the last finalized config

the server sets the 
data of config to ⊥

Server’ 
Response

72

Optimisation 2: Garbage Collection 
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executes on a domain 
of objects

transfer latest tag-value 
pairs for each object 
from configs

gathers the tag-value pairs 
for each object o in D

transfers the maximum pair 
to the new config
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Optimisation 3: Batching 
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Optimization Results – Piggyback 

 

 
 

Optimization Results – Piggyback 

 

 
 Andria Trigeorgi Defence - UCY 2025

• CoARESF (256 MB & 512 MB): Significant performance drops without 
optimization. 
• Non-optimized: 4 rounds per block with double read-config.

• With 𝑃𝐵 Optimization: Reduced to 2 rounds, lower read latency.



Scenario 1:

• PB version has the worst latency, since transfers data and config in 11 round trips.

• PB with GC is fastest, since it updates pointers reducing actions.

• CoARESF & Larger Objects (64MB):  No differences between versions since the first block finds the latest 
config and the next block starts from that config.

Scenario 2: 

• Original vs. PB has similar performance with one extra round trip.      

• PB with GC is faster, skipping every 4 configurations, fewer rounds needed.
75

Optimization Results – Garbage Collection 
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Recap

• Used tracing to pintpoint inefficiencies by monitoring individual 
procedures.

• Develop optimizations, leading to ARES II.
• Show the correctness of ARES II and conduct performance evaluations to 

showcase its improvements over ARES.
• Distributed tracing is crucial for diagnosing and resolving performance 

issues in DSM algorithms.

Optimization Strategies
• Piggy-backing: Integrating configurations with read/write messages to expedite 

configuration discovery.
• Garbage Collection: Eliminating obsolete configurations for quicker access to the 

latest data.
• Data Batching: A single reconfiguration across multiple objects to enhance efficiency.

Andria Trigeorgi Defence - UCY 2025
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Conclusion

• CoBFS has the following advantages:
• High Concurrent accesses 

• Strong Consistency

• Large file size (tested up to 1GB file)

• CoARESF has the following advantages:
•  the first dynamic DSM with coverable fragmented objects & 2-Level of Striping

• Optimized for High Concurrent accesses 

• Theoretical principles illustrated by extensive experimental evaluation 
•  atomic consistency, data striping, erasure coding, access to the same files under 

heavy concurrency, fault-tolerance, reconfiguration

Andria Trigeorgi Defence - UCY 2025
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Ongoing and Future Work
• Design Reconfiguration Orchestration Strategies (ROS) for dynamic DSM

• When to invoke reconfigurations 
• How to reconfigure 
• Ensure that the system remains operational despite server failures.
• Improve performance by replacing older servers with more powerful ones.

• Server Failure Prediction
• Monitor environmental parameters of servers (performance, capacity, availability, and health).
• Threshold-based approaches for determine when to reconfigure.
• Predict failures using Machine Learning.

• Develop, Deploy, and Evaluate Web Platform 
• Deploy and get access to configurations of DSM with ROS support by specifying servers.
• Manage existing configurations.
• Get access to existing configuration for reading and writing data objects either through the platform directly or through a third-party 

application using appropriate security tokens. 

• Fully-functional Distributed Storage System with Security Guarantees 

• Extensive Experimental Evaluation
• Compare CoARESF against commercial solutions that employ a striping method.
• Integrate any commercial solution into CoBFS.

Andria Trigeorgi Defence - UCY 2025
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CORRECTNESS



Data Access Primitives (DAPs)

• Operation Ordering: logical tags 𝜏 =< 𝑡𝑠, 𝑤𝑖𝑑 >

• For a configuration 𝑐, any client p may invoke any of the following DAPs:
• D1.   𝑐. 𝑔𝑒𝑡 − 𝑡𝑎𝑔  : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 𝜏 ∈  Τ

• D2. 𝑐. 𝑔𝑒𝑡 − 𝑑𝑎𝑡𝑎  : 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎 𝑡𝑎𝑔 − 𝑣𝑎𝑙𝑢𝑒 𝑝𝑎𝑖𝑟 𝜏, 𝑣  ∈ Τ ×  𝑉

• D3.   𝑐. 𝑝𝑢𝑡 − 𝑑𝑎𝑡𝑎 < 𝜏, 𝑣 > : the tag − value pair 𝜏, 𝑣  ∈ Τ ×  𝑉 as argument

• Property 1: DAP consistency conditions
• C1: if a put-data(<𝜏,v>) precedes a get-data/get-tag operation that returns 𝜏′, then 𝜏′ ≥ 𝜏

• C2: if a get-data returns <𝜏′,v′>, then there exists put-data(<𝜏′,v′>) that precedes or is 
concurrent to the get-data operation

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 84

DAP-ABD and DAP-EC satify Property 1



Proof challenges: CoARES satisfies coverability despite any 
reconfiguration in the system.

• New values are not overwritten (by writes associated with 
older versions)

• Versions are unique

• Eventually a single version path prevails

CoARES implements a linearizable coverable object, given that the DAPs 
implemented in any configuration c satisfy DAP Consistency Conditions.

Theorem

Correctness of CoARES
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Proof challenges
• f remains connected and composed of the most recent 

blocks, despite  concurrent read/write and reconfig 
operations

• Each block may exist in different configurations and be 
accessed by different DAPs

• Show that fragmented linearizable coverability cannot be 
violated

CoARESF implements a linearizable coverable fragmented object.

Theorem

Correctness of CoARESF

86Andria Trigeorgi Defence - UCY 2025



From ARES to ARES II

• Piggy-backing: Integrating configurations with read/write 
messages to speed up configuration discovery.

• Garbage Collection: Eliminating obsolete configurations for 
quicker access to the latest data.

• Data Batching: A single reconfiguration across multiple objects to 
enhance efficiency.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 87



Correctness of ARES II

• The correctness of ARES II depends on the correct implementation of 
both EC-DAP II and the Reconfiguration protocol.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 88



Correctness of EC-DAP II

Proof Challenges

• Tag Guarantee: get-data() always returns a tag ≥ any previous put-
data().

• Value Origin: Values from get-data() come from put-data(), the initial 
value, or ⊥ (due to garbage collection).

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 89

Revised Property 1 to accommodate the fact that get-data can 
return a tag associated with either a value from V or ⊥. 

Theorem



Reconfiguration Protocol Properties 

Proof Challenges

• All processes must have the same config at index k.

• Next configs must point to a higher index than the current one.

• Future actions must start from a config at or above the last finalized 
config.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 90

For completed actions π1 and π2, where π1 → π2:
a. Configuration Uniqueness
b. Subsequence 
c. Sequence Progress

Theorem



Atomicity

Proof Challenges

• Ensure get-data returning ⊥ does not prevent the read operation from 
retrieving a valid non-⊥ value.

• The read operation must continue until it finds a finalized (not GC) config 
with the highest tag with a non-⊥ value.

• Batching must behave like multiple reconfigurations, maintaining the 
correctness of read/write operations.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 91

ARES II guarantees atomicity, given that the DAPs implemented in 
any configuration c satisfy Property 1 and satisfy the 
reconfiguration properties.

Theorem



Correctness of EC-DAP II

Proof Challenges

• The tag returned by get-data() is guaranteed to be ≥ the tag from any 
prior put-data(). 

• Values returned by get-data() are either from a put-data() operation, 
the initial object value, or ⊥ (due to garbage collection).

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 92

Revised Property 1: DAP consistency conditions
C1: if a put-data(<𝜏,v>) precedes a get-tag (or get-data) 
operation that returns 𝜏′ (or <t’,v’>/ <t’,⊥>), then 𝜏′ ≥ 𝜏
C2: if a get-data returns <𝜏′,v′> or <t’,⊥>, then there exists 
put-data(<𝜏′,v′>) that precedes or is concurrent to the get-
data operation

Theorem



Reconfiguration Protocol Properties 

Proof Challenges

• Must have the same configuration at index k, regardless of how they received it 
(propose operation or DAP/read-config)

• If the last configuration has index k, subsequent configurations with index j must 
have a nextC pointing to a configuration with index i≥j+1.

• If the last finalized configuration has index k, future actions must start from a 
configuration with index j such that j≥k.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 93

For completed actions π1 and π2, where π1 → π2:
a. Configuration Uniqueness: Configuration sequences in any two 

processes are identical at any common index i.
b. Subsequence: The configuration sequence x observed by π1 is 

a subsequence of the sequence y observed by π2, i.e. λ(x)≤λ(y).
c. Sequence Progress: Finalized configurations progress in order.

Theorem



Atomicity

Proof Challenges

• Ensure that get-data returning ⊥ does not prevent the read operation from 
retrieving a valid non-⊥ value.

• The read operation must continue until it finds a finalized configuration 
that is not garbage collected, yielding the highest tag with a non-⊥ value.

• Batching is indistinguishable from multiple reconfigurations, ensuring the 
correctness of read/write operations.

C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024 94

ARES II guarantees atomicity, given that the DAPs implemented in 
any configuration c satisfy Property 1 and satisfy the 
reconfiguration properties.

Theorem



EXTRA SLIDES



Algorithm/  
System

Data 
scalability

Data 
access
Concurrency

Consistency  
guarantees Versioning Data 

Striping
Non-blocking 
Reconfic

GFS YES concurrent  
appends relaxed YES YES

YES
(short 
downtime)

HDFS YES files restrict one 
writer at a time

atomic
(centralized) NO YES YES

Cassandra YES YES
tunable 
(default=  
eventual)

YES NO NO

Dropbox YES
creates 
conflicting  
copies

eventual YES YES N/A

Colossus YES concurrent  
appends relaxed YES YES YES

Blobseer YES YES atomic
(centralized) YES YES YES

Tectonic YES files restrict one 
writer at a time read-after-write YES YES YES

COABD NO NO atomic YES NO NO

COBFS (using ABD) YES YES atomic YES YES NO

LDR YES NO atomic NO NO NO

RAM BO/ DYNASTORE

SMSTORE/SPSNSTORE 
NO NO atomic NO NO YES

ARESABD NO NO atomic NO NO YES

ARESEC NO NO atomic NO YES YES

COARESABD NO NO atomic YES NO YES

COARESEC NO NO atomic YES YES YES

COARESABDF YES YES atomic YES YES YES

COARESECF YES YES atomic YES
YES
(2 lvl striping)

YES



Distributed Storage Systems

Andria Trigeorgi Comprehensive - UCY 2022

System
Data
scalability

Data
access Concurr.

Consist.
guarantees

Versioning
Data
Striping

Non-blocking 
Reconfig.

G F S Y ES
concurrent
appends

relaxed Y ES Y ES
Y ES
(short downtime)

C ol o ssu s Y ES
concurrent
appends

relaxed Y ES Y ES Y ES

H D F S Y ES files      restrict one 
writer at a time

atomic
centralized

NO Y ES Y ES

CAssANDRA Y ES Y ES
tunable
(default=  eventual)

Y ES NO NO

DRoPBox Y ES
creates
conflicting  copies

eventual Y ES Y ES N /A

REDIs Y ES Y ES eventual Y ES NO NO

BloBsEER Y ES Y ES
atomic
centralized

Y ES Y ES Y ES

TEcToNIc Y ES files      restrict one 
writer at a time Read-your- writes Y ES Y ES Y ES
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CASSANDRA

• What is Cassandra? a key-value Distributed Database.

• Why Cassandra? availability, high performance, horizontal scalability.

• How it works? Gossip protocol, Peer-to-peer communication in a Ring  topology.

• Tunable Consistency = number of nodes to acknowledge an operation 
(default=Eventually). Can support strong consistency.

• Tunable Replication Factor (# of copies). 

    We set RF=n, CL=majority (n/2+1) - atomic

Cassandra, https://cassandra.apache.org/ /index.html
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REDIS
• What is Redis? Ultra-fast in-memory key-value store. Used as database, 

cache, and for simple apps.

• It has memory limitations.

• “WAIT” command for synchronous replication 

    (We set a majority (n/2 + 1) of waiting write acks).

• It provides Eventual consistency. 

• Replication: Master ensures that one or more slaves becomes exact copies of it. 
Clients can connect to the master or to the slaves. Slaves are read only by default.

Redis, https://redis.io



Andria Trigeorgi Proposal - UCY 2023 100

Trade-offs

• Block size of FM. data striping performance highly depends on the  
block size.

• Parity of EC. the further increase of the parity (and thus higher  
fault-tolerance) the larger the latency.

• Parameter δ of EC. δ = #writers & each server sends δ + 1  
concurrent values in the first phase→ as the #writers increases, the  
latency also increases



Participation Scalability 

101C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

ARESEC, S:3, W:5, R:50, fsize:4MB, Debug Level:DSMM ARESEC, S:11, W:5, R:50, fsize:4MB, Debug Level:DSMM 



Block Sizes

102C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

CoAresECF, S:11, W:5, R:5, fsize:512MB, Min/Avg Block Size:2MB, 

max Block Size:4MB, Debug Level:DSMM 

CoAresECF, S:11, W:5, R:5, fsize:512MB, Min/Avg Block Size:64MB, 

max Block Size:128MB, Debug Level:DSMM 



Longevity 

103C. Georgiou, N. Nicolaou, A. Trigeorgi ARES II: Tracing the Flaws of a (Storage) God – SRDS 2024

CoAresF, S:11, W:5, R:15, G=1, 

fsize:4MB, Debug Level:DSMM 

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB, 

Debug Level:DSMM 

CoAresF, S:11, W:5, R:15, G=5, fsize:4MB, 

Debug Level:DSMM 



The Latencies of read-config and get-data. 
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The Latencies of read-config and get-data. 
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